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Recent exponential growth of investors in stock markets
brings the idea to develop a predictive model to forecast the
total risk of investment in stock markets. In this paper, an
evolutionary approachwas proposed to predict the total risk
in stock investment based on an S&P 500 database in a time
period of 1991-2010 employing a multi-objective genetic
programming alongwith an adaptive regression bymixing
algorithm. The reasonable results suggest that the proposed
model can be applied to various stock databases to assess
the total risk of investment. The proposedmodel along with
stock selection decision support systems can overcome the
disadvantages of weighted scoring stock selection.
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1 | INTRODUCTION

The facts that the stockmarketsmay not be semi-strong-form efficient or weak-form efficient in some periods bring
the idea that the return of investment can be increased by employing proper statistical factors Liu and Yeh (2017).
There are numerous articles in stock prediction to find consistent paths to relate value andmomentum return based on
common factors Asness et al. (2013)Mohanram (2005)Roko andGilli (2008). To name a few, Holthausen and Larcker
(1992) examined the profitability of a trading strategy based on a logit model to forecast the sign of subsequent twelve-
month excess returns from accounting ratios over the 1978–1988 period. Moreover, Sorensen et al. (2000)Velikova
and Daniels (2004) employed classification trees in various contexts including stocks portfolio and housing price.
There are nonlinearities amongmost of the fundamental statistical factors Duda et al. (1973). Therefore, most of the
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time linear models should be discarded and nonlinear robust models are needed. In addition to this, there is no clear
interpretation of the relations in statistical favor models since they work like a black box Roko and Gilli (2008). Various
papers have addressed the same issues by considering several linear models to predict the relations among factors
Fama (1970)Albanis and Batchelor (2000)Arentze and Timmermans (2003). To address the black box concept and
nonlinear relations among the model factors, Liu and Yeh (2017) have designed a stock selection decision support
systems using neural networks. In this paper, to complete the proposedmodel by Liu and Yeh (2017), a multi-objective
genetic programmingwas proposed to be added to the available decision system to predict the total risk in stockmarket.
To test out the performance of the proposed predictive model, an S&P 500 database in a time period of 1991-2010was
employed.

Algorithm 1:ARM
Input: Input VariablesXi , Target VariablesYi , i ∈ (1,N), Function f̂
Output: BestModel

1 Random permutation the order of the observationsM ;
2 form ∈ {1, . . . ,M − 1} do
3 Randomly permute the order of the observations.;
4 Split the data into two parts ;
5 Z (1) = (Xi ,Yi )

N
2
i=1
;

6 Z (2) = (Xi ,Yi )N
i= N2 +1

;
7 for j ∈ {1, . . . , J } do
8 Estimate f̂

j , N2
(x ; Z (1)) of f ;

9 Estimate the variance function σ2(x ) by σ̂2

j , N2
(x );

10 for i ∈ { N2 + 1, . . . ,N } do
11 PredictYi by f̂j , N2 (Xi ) ;
12 end

13 Ej =

∏N

i= N2 +1
h((Yi −f̂j , N2

(Xi ))/σ̂j , N2
(Xi ))∏N

i= N2 +1
σ̂
j , N2
(Xi )

;

14 Compute the current weightŴj =
Ej∑J
l=1

El
;

15 end
16 The final estimate is f̂N (x ) = ∑J

j=1 Ŵj f̂j ,N (x ) ;
17 end

2 | GENETIC PROGRAMMING

Genetic Programming (GP) Koza (1992) is a symbolic optimization technique that searches the feature space to find
the best fittedmathematical model for both accuracy and simplicity. Based on functional programming language, GP
applies the selection framework on objectives of the problem such as fitness and complexity measures. The whole
procedure follows the principle of Darwinian natural selection to use computer programs for solving a problem through
evolutions. In fact, GP is a population-basedmethod through generations instead of choosing only one candidate. This
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stage is built by randomly mixing mathematical building blocks such as mathematical operators, analytic functions,
constants, and state variables. Genetic operators make new generations guided by objective functions to ensure
the quality of each individual. GP function regressor Veeramachaneni et al. (2015)Veeramachaneni et al. (2013) was
implemented as aMulti-Objective Genetic Programming (MOGP) approach based on Non-Dominated Sorting Genetic
Algorithm II (NSGA-II) introduced by Deb et al. (2002). The algorithm employs two different objective functions
including model errors and the subtree complexity measure. Then, based on Adaptive Regression byMixing (ARM)
algorithm as shown inAlgorithm1, a fusedmodelwas proposed. The proposed fusedmodel based on theARMalgorithm
has the ability of adapting itself over different procedures to performwell under various conditions. Essentially, the
goal of employing the ARM algorithmwas to produce amodel by giving different weights to some of themodels in the
Pareto front via proper assessment of performance of the estimators Yang (2001). GP has shown great performance in
predicting complex patterns using its evolutionary nature Gandomi et al. (2015)Tahmassebi et al. (2017c)Tahmassebi
et al. (2017a)Tahmassebi and Gandomi (2018) and flexibility to be combinedwith parallel algorithms to runmultiple
jobs using high performance computing (HPC) Tahmassebi et al. (2017b).

TABLE 1 Parameters setting for the GP function regressor.
Parameter Setting

Population Size 1000
Number of Generations 500
Tournament Size 20
Number of Inputs 5
Crossover Rate 0.1
Mutation Rate 0.9
Number of Examples in Training Set 189
Number of Examples in Testing Set 63
Number of CPU Threads 4
1st Objective MSE
2nd Objective Subtree Complexity
Population Initialization Ramped-Half-and-Half
Function Set +,−,×, /,√ , ( )2, ( )3, ( )4

log, exp, sin, cos

3 | RESULTS & DISCUSSION

To test out the performance of the proposedmodel, an S&P500database presented by Liu andYeh (2017)was employed.
Liu and Yeh (2017) built a stock selection decision support model using mixture design and neural networks. In this
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F IGURE 1 Correlationmatrix illustration of the input variables along with the output variable using hierarchical
clustering.

F IGURE 2 The evolution of the employed objective functions, fitness and complexity measures for the developed
GPmodel through different numbers of generations.
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(a) Annual Return

(b) Excess Return

(c) Systematic Risk

F IGURE 3 An exhaustive comparison of the predicted total risk for (a) the annual return, (b) the excess return, and
(c) the systematic risk using themost accuratemodel, the least complexmodel, and the fusedmodel versus the
experimental data.
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regard, they computed the optimal weighting combinations of stock-picking concepts in four different periods of time
from 1991 until 2010 Liu and Yeh (2017)Yeh and Cheng (2010)Yeh andHsu (2011). Employing the calculated weight
throughout a densely connected neural network model, they have chosen six different output targets including (1)
annual return, (2) excess return, (3) systematic return, (4) absolute winning rate, (5) relative winning rate, and (6) total
risk. Figure 1 presents the correlation matrix illustration of the input variables along with the output variable using
hierarchical clustering. Positive correlations are displayed in white and negative correlations in black. It is clear that
the diagonal has the probability of one (full white circle). The size of the circles are proportional to the correlation
coefficients. Thus, as the circle gets progressively larger this indicates the features aremore correlated which in turn
can be both positive or negative (black or white). For example, the total risk and the absolute winning rate are inversely
correlated and the absolute winning rate and the annual return are linearly correlated.

In this paper, robust models using a combination of theMOGP and the ARM algorithmwere proposed to find the
relation between the total risk with the rest of the targets. All the proposedmodels were trained using the first three
time periods andwere tested on the fourth time period to stay away from overfitting. Table 1 presents the parameter
settings for the GP function regressor. Figure 2 presents the evolution of the employed objective functions, fitness
and complexity measures for the developed GPmodel through 500 generations over the training data set. As shown,
the fitness measure reached a value of 93% after 500 generations. In addition to this, the subtree complexity measure
increased through numbers of generations at first, but after 500 generations, it decreased and reached a stable value
of 2870. In addition to this, a fused model based on ARM algorithm as shown in Algorithm 1 was presented as well.
The proposed fused model based on the ARM algorithm has the ability of adapt itself over different procedures to
perform well under various conditions. In other words, the goal of employing the ARM algorithm was to produce a
model by giving different weights to some of themodels in the Pareto front via proper assessment of performance of
the estimators Yang (2001).

Figure 3 presents an exhaustive comparison of the predicted total risk for the annual return (Figure 3a), the excess
return (Figure 3b), and the systematic risk (Figure 3c) using the most accurate model, the least complex model, and
the fusedmodel versus the experimental data. As shown, themost accuratemodel with a value of 0.9297 for R 2 and a
value of 4.7 × 10−5 forMSE showed the best performance in predicting the total risk. As seen, the predicted values
are truly close to the experimental data. Table 2 presents the summary statistics including correlation coefficient (R 2),
mean-square error (MSE ), andmean absolute error (MAE ) of the results of the GP function regressors including the
most accuratemodel, the least complexmodel, and the fusedmodel. Higher R 2 values and lowerMSE values result
in amore precise model. Although the proposed fusedmodel could not outperform themost accuratemodel on the
employed database, it has shown great potential in complex databases Ilario da Silva et al. (2017)Veeramachaneni et al.
(2013)Veeramachaneni et al. (2015).
TABLE 2 Regression scoremetrics of the selectedmodels in the Pareto front.

Model R 2 MSE MAE

Least Complex 0.7812 1.2 × 10−4 0.0105

Fused 0.9134 5.13 × 10−5 0.0055

Most Accurate 0.9297 4.17 × 10−5 0.0049
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4 | CONCLUSIONS

This paper aims at developing an evolutionary symbolic implementation for stock prediction. In this regard, a multi-
objective genetic programming strategy based on non-dominated sorting genetic algorithm II with considering the
optimization of mean-square error as the fitness measure and the subtree complexity as the complexity measure
simultaneouslywasemployed. TheGPmodel ran for500generationswith1000populations considering training/testing
sets to overcome any possible over-fitting. As shown in Table 2, higher R 2 values and lowerMSE values result in a more
precise model. Themost accurate model with an R 2 of 0.9297 showed the best performance on the employed S&P 500
database.
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