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ABSTRACT

Current models for determining dementia progression are network diffusion models derived from the heat equa-
tion without diffusion sources, and they do not model the disease agents (misfolded β-amyloid and τ -protein)
transmission dynamics. In this paper, we derive from a SIRI (Susceptible-Infected-Recovered-Infected) epidemic
model a simplified model under the information-centric paradigm over a network of heterogeneous agents and
including the long-range dispersal of disease agents. The long-range disease agent dispersal is implemented by
including the Mellin and Laplace transforms in the adjacency matrix of the graph network. We analyze the
influence of different transforms on the epidemic threshold which shows when a disease dies off. Further we
analyze the dynamical properties of this novel model and prove new conditions on the structure of the network
and model parameters that distinguish important dynamic regimes such as endemic, epidemic and infection-free.
We demonstrate how this model can be used for disease prediction and how control strategies can be developed
for disease mitigation.

Keywords: Neurodegenerative Disease, Brain Networks, Long-range Disease Agent Dispersal, Epidemic Mod-
eling

1. INTRODUCTION

Understanding and predicting disease evolution in Alzheimer’s (AD) disease is one of the most interesting research
topics in our epoch. While many imaging techniques support AD diagnosis, there are still no reliable prediction
models of disease progression. Two underlying hypotheses, the amyloid and tau hypotheses, are currently
employed when it comes to describe the mechanism of AD. Brain imaging connectomics gives an impressive
picture of the structural and functional changes related to AD. Describing dynamically the disease prediction
relies mainly on two paradigms: (1) the heat-diffusion model and (2) the information-centric network paradigm
in connection with an epidemic spreading model. Both paradigms comprise the transmission of disease agents
(misfolded β-amyloid and τ -protein) over the connectome. Advanced control theory applied on brain networks
have been shown to offer an excellent tool for analyzing the dynamics of disease by describing every node or brain
region as an acting agent connected to the others. Pinning control mechanisms has been employed to determine
the leader or driver nodes that are relevant for disease evolution.3,11,12 In previous work, the diffusion model
was a heat-diffusion model.8,9 A detailed partial differential disease model of stochastic nature was presented
in.2,7, 10

In this paper, we propose new model for the dynamical analysis and disease prediction based on epidemic
models that accounts for long-range dispersal of disease agents propagation in brain networks. We pair two
important concepts: the general SIRI (Susceptible-Infected-Recovered-Infected) epidemic model on a network
of heterogeneous agents6 with the long-range dispersal of disease agents implemented based on transformations,
such as the Mellin and Laplace transforms, which yield a generalization of the adjacency matrix of the geometric
graph. We compare these results with brain regions in the structural networks that can act as drivers and move
the system (brain) into specific states of action. These influence the cognitive functions. Our results will prove
that the experimental neurological findings are confirmed by showing the correct diffusion sources for AD.13,14
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2. MODELS OF PATHOGEN TRANSMISSION DYNAMICS ON HETEROGENEOUS
SPATIALLY EMBEDDED NETWORKS

In control theory, a square matrix M is of Hurwitz-type or stable if none of the eigenvalues have a positive or
zero real part. A real square matrix M is Metzler if mjk ≥ 0 for j 6= k. The spectrum of matrix M is given
as λ(M) = {λ1, λ2, · · · , λN}, its spectral radius as ρ(M) = max{|λj ||λj ∈ λ(M)} and the leading eigenvalue is
λmax(M) = argmaxλj∈λ(M)|λj |.

Properties of Metzler Matrices. Let K be a Metzler matrix. Then,

• λmax(K) ∈ R. If K is irreducible, then λmax(K) has multiplicity of one.

• K is Hurwitz.

• If K is a Metzler matrix and K = T + U representing a regular splitting then:

(a) λmax(K) < 0 if and only if ρ(−TU−1) < 1.

(b) λmax(K) = 0 if and only if ρ(−TU−1) = 1.

(c) λmax(K) > 0 if and only if ρ(−TU−1) > 1.

To define the network model for the epidemiological SIRI model describing a contagious process with rein-
fection, we consider a graph G = {V, E} with N nodes and adjacency matrix S. We use an individual-based
mean-field approach (IBMF) as proposed in6 that assumes that the state of each node is statistically independent
from its neighbors and describes the state of each agent j at time t ≥ 0 as a probability pSj (t), pIj (t), p

R
j (t) being

in state S (susceptible), I (infected) or R (recovered). The probabilities are related as pSj + pIj + pRj = 1. By
using this relationship, the number of state equations can be reduced from 3N to 2N and be written in matrix
form with pΩ = [pΩ

1 , · · · , pΩ
N ]T and PΩ = diag(pΩ) for Ω ∈ {S, I}:

ṗS = −PSBpI
ṗI = (B∗(pS)−D)pI − P IB̂pI (1)

where B∗(pS) = (1− PS)B̂ + PSB

and

B = {βjk} � 0̄ (infection matrix)

B̂ = {βjk} � 0̄ (reinfection matrix)
D = diag{δ1, · · · , δN} � 0̄ (recovery matrix)

(2)

As shown in,1 we define the d-path adjacency matrix which describes the spread of infective particles from a
given position beyond the immediate neighbors. dmax defines the graph diameter being the maximum shortest
path distance in the disease graph.

We adopt the definition verbatim from:1

Definition 1.1 Let d ≤ dmax. The p-th adjacency matrix, denoted by Ad, of a connected graph of N nodes
is the square, symmetric N ×N matrix whose entries are:

Ad(i, j) =

{
1, if dij = d

0, otherwise
.

where dij is the shortest path distance between the nodes i and j.

The transformed d-path adjacency matrices for the Mellin and Laplace transforms are adopted from1 as:
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Ãτ =



dmax∑
d=1

d−sAd, for τ = Mell, s > 0,

A+

dmax∑
d=2

exp (−λd)Ad, for τ = Lapl, λ > 0

where τ the transformation’s type as being either Mellin or Laplace.

The equations of the SIRI model under the individual mean-field approximation and considering that

The dynamics including the d-path adjacency matrices for the SIRI model where pΩ = [pΩ
1 , · · · , pΩ

N ] and
PΩ = diag(pΩ) for Ω ∈ {S, I}:

ṗS = −PSBÃτpI
ṗI = (B∗Ãτ (pS)−D)pI − P IB̂ÃτpI

(3)

where B∗Ãτ (pS) = (1− PS)Ãτ B̂ + PSBÃτ .

Two important models that pertain to neurodegenerative diseases can be derived from the SIRI network
model:

• SI model: Assuming the matrix D = 0, the SIRI model becomes an SI model, meaning there is only
infection or disease spread and no recovery.

• SIR model: Assuming B̂ = 0,the SIRI model becomes an SIR model, meaning there is also recovery.

The resulting equations for the SI and SIR models are:

ṗS = −PSBÃτpI SIR model

ṗI = (PSBÃτ (pS)−D)pI
(4)

and

ṗS = −PSBÃτ (1− pS) SI model (5)

3. EQUILIBRIA AND REPRODUCTION NUMBERS

The equilibria and reproduction numbers represent very important parameters describing the dynamical behavior
of neurodegenerative models. The equilibrium values for pS and pI are defined as pS∗ and pI∗, respectively.

Proposition 1.6 The only equilibria of the SIRI model (3) are the infection-free equilibria (IFE) and one or
more isolated endemic equilibria (EE).

The IFE set is defined as

M = {(pS∗,0) ∈ ∆N |0 � pS∗ � 1} (6)

and corresponds to all equilibria for which pI∗ = 0, i.e. pS∗ + pR∗ = 1.

EE represents the equilibria where pI∗ � 0 satisfies

pI∗j =

∑N
k=1 β̂jkÃ

τ
ijp

I∗
k

δj +
∑N
k=1 β̂jkÃ

τ
ijp

I∗
k

(7)
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Figure 1: Nodes representing diffusion sources for a stochastic SI model.7

For B̂ irreducible, we have for every EE, pS∗ = 0 and pI∗ � 0.

Looking at the SI model, the only equilibrium is a unique EE where pI∗ = 1 and pS∗ = 0. And as for the
SIR model, the only equilibria represent the IFE set M.

The IFE stability for SIR on the set M is determined based on the following Lemma.6

Lemma 1.6 (Local stability of points for the SIR model in the IFE set M).
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Figure 2: Laplace-transformed d-path adjacency matrix Ãτ for λ = 0.5, 1, 1.5, 2.

Let x = (pS∗,0) ∈ M. Let JM(x) be the Jacobian of 4 at x and λTmax(JM(x) the leading transverse
eigenvalue of JM(x). Then λTmax(JM(x)) ∈ R and the following hold.

• Suppose λTmax(JM(x)) < 0, then x is locally stable.

• Suppose λTmax(JM(x)) > 0, then x is unstable.

Proof. For an arbitrary point x = (pS∗,0) ∈M, we get for the SIR Jacobian JM(x)

JM(x) =

[
0 −PS∗BÃτ
0 JT (pS∗)

]
(8)

Since JT (pS∗) = B∗Ãτ (pS∗)−D = PS∗BÃτ −D. The N transverse eigenvalues of JM(x) are the eigenvalues of
JT (pS∗) and thus λTmax(JM(x)) = λmax(JT (pS∗)). As shown in,6 if λmax(JT (pS∗)) < 0, then every transverse
eigenvalue of JM(x) has a negative real part. The contrary happens if λmax(JT (pS∗)) > 0, then there exists at
least one transverse eigenvalue of JM(x) with positive real part.

We use the definitions from6 and describe the basic R0 and extreme basic reproduction numbers Rmax and
Rmin to analyze the SIR dynamical behavior. Their computation is based on the spectral radius formulas from
the below Proposition.

Proposition 2.1 (Spectral Radius Formulas for Reproduction Numbers). The reproduction numbers for a
SIR model are given as following:

• R0 = ρ(BÃτD−1)

• Rmax = max0�p�1ρ(PBÃτD−1)

• Rmin = min0�p�1ρ(PBÃτD−1)
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Figure 3: Mellin-transformed d-path adjacency matrix Ãτ for s =, 2, 3, 4.

where P = diag(p).

As a consequence of the above definitions and the derivations from,6 we obtain:

• SI model: Rmin > 1 and all solutions of (3) converge to the endemic regime.

• SIR model: Rmax = R0 and Rmin = 0. The only solutions converge to the infection-free and epidemic
regimes.

The epidemic threshold ζ = β
δ is a marker for determining when an infection dies out: if ζ < 1, the infection

dies out and when ζ > 1 the infection becomes an epidemic. In4 was shown that ζ = 1
λ1(G) with λ1 being the

largest eigenvalue for the adjacency matrix. For the transformed d-path adjacency matrix Ãτ , it was shown in1

that the same relationship holds when the regular adjacency matrix is replaced by the transformed matrix.

In the dementia environment, we have the following control mechanisms for the recovery steady state: (1)
modification of the brain region recovery rate, (2) modification of the region’s disease agent transmission rate
and (3) modification of the affected brain connectome topology.

4. RESULTS

We apply the theoretical results on structural (MRI) connectivity graphs for control (CN), mild cognitive im-
pairment (MCI) and Alzheimer’s disease (AD) subjects. For the structural data, the connections in the graph
show the inter-regional covariation of gray matter volumes in different areas. We considered only 42 out of the
116 from the AAL in the frontal, parietal, occipital and temporal lobes as shown in.5 The nodes in the graphs
represent the regions while the links show if a connection is existing between these regions or not. Figure 1
(a)-(c) shows the sources found on the structural data for (A) controls, (B) MCI and (3) AD based on an SI
mode.
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We apply the Mellin- and Laplace-transformations on the adjacency matrices and the resulting graphs are
shown in Figures 2 and 3 for different parameter’s values. The epidemic thresholds change in function of the
parameters of each transform. Table 1 shows the epidemic threshold for varying parameters for the two trans-
forms. For both transforms the epidemic threshold increases when the specific Mellin and Laplace parameters
increase.

Table 1: Epidemic threshold for the two transformed d-path adjacency matrix Ãτ Mellin and Laplace for varying
parameters for AD.

Mellin transform Laplace transform
s=1: 0.11 λ = 0.5: 0.13
s=2: 0.15 λ = 1: 0.17
s=3: 0.17 λ = 1.5: 0.17
s=4: 0.19 λ = 2: 0.19

Figures 2 and 3 representing the transformed adjacency matrices show that the spread of the infective particle
beyond the nearest neighbors from its current position is stronger for the Laplace transformation than for the
Mellin transformation.

5. CONCLUSIONS

In this paper, we have developed a novel disease transmission model for dementia on heterogenous spatially
embedded networks that takes into account the long-range transmission of disease agents. The model represents
a special case of a general SIRI model by using a transformed adjacency matrices. The spatial characteristics is
implemented by applying transformations, such as the Mellin and Laplace transforms on the adjacency matrix.
We analyze two special cases, the SI and SIR model, and derive the epidemic parameters. In the case of the SI
model, we have shown that the spread of the infective particle beyond the nearest neighbors from its current
position favors the Laplace transformation than the Mellin transformation. We hypothesize that we have for this
transformed model a much faster propagation of the disease than in normal diffusion models for dementia.
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