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Amirhessam Tahmassebi
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ABSTRACT

Emerging as one of the most contemporary machine learning techniques, deep learning has shown success in
areas such as image classification, speech recognition, and even playing games through the use of hierarchical
architecture which includes many layers of non-linear information. In this paper, a powerful deep learning
pipeline, intelligent deep learning (iDeepLe) is proposed for both regression and classification tasks. iDeepLe is
written in Python with the help of various API libraries such as Keras, TensorFlow, and Scikit-Learn. The core
idea of the pipeline is inspired by the sequential modeling with considering numerous layers of neurons to build
the deep architecture. Each layer in the sequential deep model can perform independently as a module with
minimum finitudes and does not limit the performance of the other layers. iDeepLe has the ability of employing
grid search, random search, and Bayesian optimization to tune the most significant predictor input variables and
hyper-parameters in the deep model via adaptive learning rate optimization algorithms for both accuracy and
complexity, while simultaneously solving the unknown parameters of the regression or the classification model.
The parallel pipeline of iDeepLe has the capacity to handle big data problems using Apache Spark, Apache
Arrow, High Performance Computing (HPC) and GPU-enabled machines as well. In this paper, to show the
importance of the optimization in deep learning, an exhaustive study of the impact of hyper-parameters in a
simple and a deep model using optimization algorithms with adaptive learning rate was carried out.

Keywords: Deep Learning, Deep Neural Networks, Machine Learning, Classification, Regression, Optimization.

1. INTRODUCTION

Creation of the first computational model based on artificial neural networks (ANN) with application to artificial
intelligence (AI) might date back to a model built in 1943, which was inspired from biology to simulate how the
brain works.1 Neurons in the perceptual system represent features of the sensory input. The brain has a deep
architecture and learns to extract many layers of features, where features in one layer represent combinations of
simpler features in the layer below and so on. This is referred to as feature hierarchy. Based on this idea, several
architectures for the topology of the networks such as layers of neurons with fully/sparse connected hidden layers
were proposed.2 The essential questions to ask are: How can the weights that connect the neurons in each layer
be adjusted? How many parameters should we find and how much data is necessary to train or test the network?
What would be the most efficient strategy for optimizing the hyper-parameters? What optimization algorithm
can speed up the optimization process of the hyper-parameters? What parallel architecture or cluster-computing
framework can be employed along with the deep neural networks to handle big data problems? Before 2006 there
was lack of computational equipment to train or test deep neural networks and shallow neural networks were
the best choice to be employed as a model. In 2006 Hinton et al.3 proposed Deep Belief Networks (DBN) based
on Restricted Boltzmann Machines (RBM). Additionally, in 2007 Bengio et al.4 created a greedy layer-wise
training of deep neural networks. This would be the beginning of the revolution in deep neural networks and a
breakthrough in learning deep architectures using different perspectives of optimization. Deep learning models
involve optimization from the first day of appearance of neural networks. For example, Vapnik and Cortes5

proposed Support Vector Machines (SVM) just by employing a smart optimization algorithm in implementing
the single layer perceptron. SVM along with different kernel functions such as linear, sigmoid, radial basis
function, and polynomials is still one of the best methods implemented in machine learning.5 This highlights
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Figure 1. An illustration of iDeepLe pipeline.

the importance of the optimization algorithms in development of the deep neural networks topologies. Deep
learning explores complicated structures especially in big data problems with the help of the backpropagation
optimization algorithm to compute the hyper-parameters involved in the network.2,6

Emerging as one of the most contemporary machine learning techniques, deep learning has shown success in
areas such as image classification, speech recognition, and even playing games through the use of hierarchical
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architecture which includes many layers of non-linear information.7–9 Availability of huge amounts of training
data, powerful computational infrastructure, and advances in academia could be named as the three main
bedrocks of recent deep learning success. This encourages the development of deep learning models to be
applied to real-world problems. Importantly, we live in an era where we have sufficient computational equipment
and cutting-edge technologies that allow us to better optimize the hyper-parameters involved in deep neural
networks. However, developing new deep models for classification or regression tasks to solve real-world problems
still demands robust optimization techniques. It should be noted that, at this point, there is no consensus on
choosing the right optimization method based on the network topology and architecture.2,7 Additionally, the
optimization strategies are getting more popular as well.10–17

In this paper, a powerful deep learning pipeline, intelligent deep learning (iDeepLe) is proposed for both re-
gression and classification models. The core idea of the proposed pipeline is inspired by the sequential modeling
and it has the ability of employing various optimization strategies including grid search, random search, and
Bayesian optimization along with adaptive learning rate optimization algorithms for hyper-parameters optimiza-
tion. The parallel pipeline of the proposed model has the potential to handle big data problems using Apache
Spark, High Performance Computing (HPC) and GPU-enabled machines.

2. DEEP LEARNING MODEL

As of November 2017, over 200,000 users employed Keras by itself in their neural network models. Netflix, Uber,
and Yelp are few examples of platforms, which built with Keras.18 In addition to this, based on arXiv.org

server, TensorFlow has the first rank in terms of mentions in scientific papers. Therefore, the combination of
Keras and TensorFlow brings more power to the pipeline. In this way, the proposed pipeline would give the users
more degrees of freedom in terms of choosing different layers, different optimizers, different backend supports,
customized functions for loss metrics, score metrics, and visualization. Figure 1 presents the work flow of the
iDeepLe’s pipeline. As the first stage of the work flow, the pipeline begins with loading data. Based on the
volume and dimensionality of the data, four different libraries including NumPy, Pandas, Spark, and Parquet
can be used. As shown, after loading data level, the goal of the deep learning model in terms of regression or
classification should be determined. The Scikit-Learn wrappers built on top of Keras can be employed along
with different sequential core layers including densely connected networks, convolutional neural networks in one,
two, and three dimensions with the ability of pooling, padding, dropping out, flattening, and reshaping for both
regression and classification tasks. iDeepLe is also prepared with three optimization strategies such as grid
search, random search, and Bayesian optimization to tune the hyper-parameters of the deep model. This level
of the work flow can be done for the topology of the network including, number of layers, number of neurons per
layer, type of activation functions per layer, learning rate, drop out rate, loss metric, score metric, number of
epochs, size of batches, and the type of optimization algorithm. As the final stage, the results can be visualized
to illustrate the performance of the optimized deep learning model according to the employed database.

3. BIG DATA APPROACH

The ”V-V-V” or ”3Vs” concept: 1) Volume, 2) Variety, and 3) Velocity introduces an arduous stage of analyzing
problems with huge volume of a variety of data in high velocity. In an abstract statement of the rise of big
data based on Moore’s law, ”world’s data doubling every year”. Deep neural networks can be the best choice
to overcome this challenge. However, this process needs further infrastructures such parallel algorithms, high
performance computing, and cloud computing.19 As the structure of the deep models gets deeper and wider,
the number of calculations increases dramatically. This brings the idea of employing computational solutions
in addition to employing high-end computational equipment. In this regard, Apache Spark and Apache Arrow,
which are fast and general engines for large-scale data processing were chosen to expedite the running process
of the proposed pipeline.20,21 Spark began life in 2009 as a project within the AMPLab at the University of
California, Berkeley∗. Spark engines can run programs 100x faster than Hadoop MapReduce in memory and 10x
faster on disk. Since the proposed pipeline was written in Python, PySpark was used to implement the Spark
context. Figure 2 depicts the data flow in PySpark in details. PySpark to create a Spark context used Py4J

∗ https://amplab.cs.berkeley.edu/
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Figure 2. An illustration of PySpark data flow. The Python environments were shaded in white and the Java environments
were shaded in blue∗∗.

which is a BSD licensed Java collection method that enables Java programs to call back Python objects and
create a Java Virtual Machine (JVM) which is an abstract computing machine that enables a computer to run
a Java program. In addition to this, Spark is compatible with most of the Python libraries such as Pandas. In
fact, the codes can be written using Pandas API and converted into Spark format. This process can also be
done while loading the data into pipeline by choosing Parquet or Spark formats in schema structure other than
common formats such as Comma Separated Values (CSV).

4. OPTIMIZATION

Deep learning models involve optimization in many contexts. The essential idea of optimization is finding the
best weights w at each layer of the topology of the deep neural networks with the hope that these weights
decrease the cost on the entire training set.7 In contrast to the traditional optimization methods in which
the optimization of the pure objective function is the direct goal, finding some weights w that minimize the
cost function and reduce the expected generalization error respectively in deep model is indirect. Additional
difference between optimizing the machine learning tasks and pure optimization is that the true distribution
of the training data set in machine learning is unknown. To overcome this challenge, the true distribution of
the training data was substituted with the empirical distribution defined by the training data and then the
optimization algorithms were applied.7,22 Optimization by itself is an arduous and time-consuming problem
and that becomes more challenging for difficulties in convex problems such as ill-conditioning, local minima,
saddle points, and steep cliff and non-convex problems including deep neural networks.23 In this paper, to
consider the previously mentioned challenges, various optimization strategies including grid-search and advanced
strategy such as Bayesian optimization along with several optimization algorithms including basic algorithms
and algorithms with adaptive learning rates for the training phase of the deep models were employed.

4.1 Optimization Strategy

As discussed, optimization by itself is a difficult and time-consuming problem. Therefore, the strategy to optimize
the problem can dramatically change the training time. However, before tackling the problem, the optimization
strategy according to the tuning process of hyper-parameters including the number of layers, the number of

∗∗ http://www.apache.org/
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neurons per layer, activation functions, weight penalty, learning rate, and momentum should be determined.
Tuning the hyper-parameter values is one of the most common reasons for not using neural networks in general.
In other words, lots of skills require to set the hyper-parameters and without any prior knowledge about the
hyper-parameters, the user could get completely stuck using wrong values as hyper-parameters and nothing would
work. Thus, in this pipeline three different optimization strategies including grid search, random search, and
Bayesian optimization were proposed to tune hyper-parameters. Grid search provides an exhaustive search over
specified parameter values for the deep model. All the possible combinations of the specified hyper-parameters
will be checked which demands huge amount of time and powerful computing equipment such as HPC and
GPU-enabled machines. That is why sometimes random search would be a suitable alternative to grid search.
In contrast to grid search, in random search not all parameter values would be tried out, but rather a fixed
number of parameter settings will be sampled from the specified distributions. This is quite interesting since not
all the alternative values in each list for hyper-parameters play an important role in the outcomes. Therefore,
by random sampling, the most important hyper-parameters can be determined and the other hyper-parameters
settings can be fixed the same as before. In this way, the same results would not be replicated anymore and the
learning slope will be positive. To overcome over-fitting depending on the size of the data k-folds cross-validation
can be employed.24 Employing machine learning to predict what combinations are likely to work well could
help to rescue from the huge computational time. It requires to predict the regions of the hyper-parameter
space that might give better outcomes. It also requires to predict how well a new combination will do and
model the uncertainty of that prediction using Gaussian Process models.25 Gaussian processes (GPs) provide a
principled, practical, and probabilistic approach in machine learning. GPs simply have an essential assumption
that similar inputs give similar outputs. This simple and weak prior are actually very sensible for the effects of
hyper-parameters. GPs are able to learn for each input dimension what the appropriate scale is for measuring
similarity. GPs predict a Gaussian distribution of values rather than just predicting a single value. Bayesian
optimization26,27 is a constrained global optimization approach built upon Bayesian inference and Gaussian
process models to find the maximum value of an unknown function in the most efficient ways (less iterations).
Algorithm 1 presents the details of how Bayesian optimization uses the prior and evidence to define a posterior
distribution over the space of functions.

Algorithm 1: Bayesian Optimization

Input: Training data S
Output: Posterior distribution

1 for i ∈ {1, 2, . . . , n} do
2 Find xi by optimizing the acquisition function over the GP : xi = argmaxu(x|S1:i−1);
3 Sample the objective function: y = f(xi) + εi;
4 Augment the data S1:i = {S1:i−1, (xi, yi)};
5 Update the GP;

6 end

4.2 Optimization Algorithm

Optimization is a broad and fundamental field of mathematics and in order to harness it to the deep learning
ends, it needs to be narrowed down. Employing gradient descent and its variants as the optimization algorithms
for deep learning and other machine learning tasks is probably the most frequent choice among users. The
most popular variant is mini-batch gradient descent which is also called stochastic gradient descent (SGD). SGD
performs an update for every mini-batch of size m training instances as shown in Algorithm 2. SGD is the
typical algorithm for training deep neural networks. The ability of adapting the learning rate based on the
data characteristics at each iteration brings another variant of gradient based optimization algorithms, Adaptive
Gradient (Adagrad). As shown in Algorithm 3, Adagrad assigns lower learning rates to the repetitive input
variables and also higher learning rates to less repetitive input variables. This would help to detect rare but
possible input variables in regression or classification tasks. This ability of Adagrad can be revealed in any
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problem with sparse training data.7,28,29 Although the learning rate in Adagrad fails to converge to zero for

Algorithm 2: SGD

Input: Training data S, learning rate η, weights w
Output: Updated weights w

1 w ← w0;
2 while stopping criterion is not met do
3 Randomly shuffle the training data S ;

4 Sample a minibatch of size m:{(x(1), y(1)), . . . , (x(m), y(m))} ∈ S ;
5 for i ∈ {1, . . . ,m} do
6 Ĝ← ∂

∂wi
cost(w, (x(i), y(i))); Gradient calculation

7 end

8 w ← w − ηĜ;

9 end

Algorithm 3: Adagrad

Input: Training data S, learning rate η, weights w, fuzz factor ε, learning rate decay over each update r
Output: Updated weights w

1 ε← ε0 ≈ 10−8;
2 w ← w0;
3 r ← 0;
4 while stopping criterion is not met do
5 Randomly shuffle the training data S ;

6 Sample a minibatch of size m:{(x(1), y(1)), . . . , (x(m), y(m))} ∈ S ;
7 for i ∈ {1, . . . ,m} do
8 Ĝ← ∂

∂wi
cost(w, (x(i), y(i))); Gradient calculation

9 end

10 r ← r + Ĝ� Ĝ;

11 w ← w − η
ε+
√
r
� Ĝ;

12 end

Algorithm 4: Adadelta

Input: Training data S, learning rate η, weights w, decay rate ρ, fuzz factor ε
Output: Updated weights w

1 ρ← ρ0;
2 ε← ε0 ≈ 10−8;
3 w ← w0;

4 E[Ĝ2]t=0 ← 0;
5 E[∆w2]t=0 ← 0;
6 for t ∈ {1, . . . , T} do
7 Randomly shuffle the training data S ;

8 Sample a minibatch of size m:{(x(1), y(1)), . . . , (x(m), y(m))} ∈ S ;
9 for i ∈ {1, . . . ,m} do

10 Ĝt ← ∂
∂wi

cost(wt, (x
(i), y(i))); Gradient calculation

11 end

12 E[Ĝ2]t ← ρE[Ĝ2]t−1 + (1− ρ)Ĝ2
t ;

13 ∆wt ← −
√
E[∆w2]t−1+ε√
E[Ĝ2]t+ε

Ĝt;

14 E[∆w2]t ← ρE[∆w2]t−1 + (1 + ρ)∆w2
t ;

15 wt+1 ← wt + ∆wt;

16 end
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Algorithm 5: RMSprop

Input: Training data S, learning rate η, weights w, decay rate ρ, fuzz factor ε, learning rate decay over
each update r

Output: Updated weights w
1 ρ← ρ0;
2 ε← ε0 ≈ 10−8;
3 w ← w0;
4 r ← 0;
5 while stopping criterion is not met do
6 Randomly shuffle the training data S ;

7 Sample a minibatch of size m:{(x(1), y(1)), . . . , (x(m), y(m))} ∈ S ;
8 for i ∈ {1, . . . ,m} do
9 Ĝ← ∂

∂wi
cost(w, (x(i), y(i))); Gradient calculation

10 end

11 r ← ρr + (1− ρ)Ĝ� Ĝ;

12 w ← w − η√
ε+r
� Ĝ;

13 end

Algorithm 6: Adam

Input: Training data S, learning rate η, weights w, fuzz factor ε, learning rates decay over each update r1

and r2, exponential decay rates β1 and β2

Output: Updated weights w
1 ε← ε0 ≈ 10−8;
2 w ← w0;
3 r1 ← 0;
4 r2 ← 0;
5 t← 0;
6 while stopping criterion is not met do
7 Randomly shuffle the training data S ;

8 Sample a minibatch of size m:{(x(1), y(1)), . . . , (x(m), y(m))} ∈ S ;
9 for i ∈ {1, . . . ,m} do

10 Ĝ← ∂
∂wi

cost(w, (x(i), y(i))); Gradient calculation

11 t← t+ 1;

12 end

13 r1 ← β1r1 + (1− β1)Ĝ;

14 r2 ← β2r2 + (1− β2)Ĝ� Ĝ;
15 r̂1 ← r1

1−βt
1
;

16 r̂2 ← r2
1−βt

2
;

17 w ← w − η r̂1
ε+
√
r̂2

;

18 end
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Algorithm 7: Adamax

Input: Training data S, learning rate η, weights w, fuzz factor ε, learning rate decay over each update r,
exponentially weighted infinity norm u, exponential decay rates β1 and β2

Output: Updated weights w
1 ε← ε0 ≈ 10−8;
2 w ← w0;
3 r ← 0;
4 u← 0;
5 t← 0;
6 while stopping criterion is not met do
7 Randomly shuffle the training data S ;

8 Sample a minibatch of size m:{(x(1), y(1)), . . . , (x(m), y(m))} ∈ S ;
9 for i ∈ {1, . . . ,m} do

10 Ĝt ← ∂
∂wi

cost(wt, (x
(i), y(i))); Gradient calculation

11 t← t+ 1;

12 end

13 rt ← β1rt−1 + (1− β1)Ĝt;

14 ut ← max(β2ut−1, |Ĝt|);
15 wt ← wt−1 − ηrt

(1−βt
1)ut

;

16 end

Algorithm 8: Nadam

Input: Training data S, learning rate η, weights w, fuzz factor ε, learning rates decay over each update r1

and r2, momentum decay rate γ, exponential decay rates β1 and β2

Output: Updated weights w
1 ε← ε0 ≈ 10−8;
2 w ← w0;
3 t← 0;
4 r1 ← 0;
5 r2 ← 0;
6 while stopping criterion is not met do
7 Randomly shuffle the training data S ;

8 Sample a minibatch of size m:{(x(1), y(1)), . . . , (x(m), y(m))} ∈ S ;
9 for i ∈ {1, . . . ,m} do

10 Ĝt ← ∂
∂wi

cost(wt, (x
(i), y(i))); Gradient calculation

11 t← t+ 1;

12 end

13 r1t ← β1r1t−1 + (1− β1)Ĝt;
14 r̂1t ← r1t

1−βt
1
;

15 wt+1 ← wt − η
ε+
√
r2t

(β1r1t + 1−β1

1−βt
1
Ĝt);

16 end

long iterations, Adaptive Delta (Adadelta) solves this problem based on two main ideas as shown in Algorithm
4: (1) scaling the learning rate to avoid observing discontinuity in the learning progress by restricting the past
gradients for a fixed size instead of incorporating the whole historical gradient information, (2) employing an
acceleration term such as momentum30 to process the first idea.31 Similar to the Adadelta algorithm, a modified
version of the Adagrad algorithm that divides the learning rate by an exponentially decaying average of squared
gradients, Root Mean Square Propagation (RMSprop) is presented as shown in Algorithm 5. RMSprop would
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Figure 3. An illustration of the classes in the MNIST database.

outperform Adagrad in non-convex problems due to the learning rate shrinkage of the Adagrad algorithm.
Moreover, as a generalization of the Adagrad algorithm by calculating and updating some statistics such as the
first and the second moments of historical gradients at each iteration, Adaptive Moment Estimation (Adam)
is presented as shown in Algorithm 6. Adam requires a little memory to process and it is suitable for noisy
and big data problems in terms of both dimension and volume. Additionally, by changing the updating norm
of the weights from the L2 norm of the previous and current gradients to the L∞ norm, Adaptive Moment
Estimation based on the Infinity Norm (Adamax) is presented as shown in Algorithm 7. As a variant of the
Adam algorithm, Nesterov Adaptive Moment Estimation (Nadam) is presented by incorporating Nesterov32

momentum30 to accelerate the learning process by summing up the exponential decay of the moving average of the
past and current gradients as shown in Algorithm 8. Nadam combines the opposite signs of gradients in directions
of high curvature with higher speed to damp the fluctuations which is suitable for problems with noisy gradients
or gradients with high curvature in particular.7,33 Furthermore, a combination of the Nesterov momentum
and the Adamax algorithm leads us to another variant of Adam, referred to as the Nadamax algorithm.34,35

Tahmassebi et al.2 were shown the performance of the optimization algorithms discussed in section 4.2 in details
for solving a real-world problem.

Table 1. Parameter settings of the simple and the deep model.

Simple Model Deep Model

Number of Input Neurons 784 784

Number of Output Neurons 10 10

Number of Hidden Layers 1 4

Array of Hidden Neurons {100} {512, 256, 128, 64 }
Hidden Activation Function Sigmoid ReLU

Output Activation Function Softmax Softmax

Total Number of Parameters 79,510 575,050

”With four parameters I can fit an elephant, and with five I can make him wiggle his trunk (John
von Neumann).”
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5. RESULTS & DISCUSSION

To test out the performance of the proposed pipeline in terms of the introduced optimization strategies and
optimization algorithms, a famous classification problem was employed. In this regard, the MNIST ∗∗∗ database
(Modified National Institute of Standards and Technology database) which is a large database of handwritten
digits (0, 1, 2, · · · , 9) of size 28×28 pixels was used. It is one of the most common databases to train deep learning
models and can be a great benchmark to compare the optimization strategies and optimization algorithms. The
training set of the database has 60, 000 exemplars and the testing set has 10, 000 exemplars.

Two different neural networks models were designed to be applied to the MNIST database: 1) simple model,
2) deep model. The details of the designed models are presented in Table 1. In this section, the impact of various
hyper-parameters in the performance of the simple model was investigated. Additionally, the performance of the
deep model using different hyper-parameters was investigated as well.

Figure 4. The performance of the optimization algorithms on the simple model: Loss evolution.

Figure 5. The performance of the optimization algorithms on the simple model: Classification accuracy.

∗ ∗ ∗ http://yann.lecun.com/exdb/mnist/
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Figure 6. The performance of the optimization algorithms on the simple model: Training time vs testing accuracy.

As the first task for the simple model, an exhaustive comparison of the classification accuracy and loss
evolution through 100 epochs employing all the optimization algorithms previously discussed in section 4 was
presented. Figure 4 illustrates an exhaustive comparison of the loss evolution through the epochs with employ-
ing various optimization algorithms using the MNIST database with a batch size of 128 and categorical cross
entropy as loss function for both training and testing sets. Adamax has shown the best performance among the
optimization algorithms with a classification accuracy value of 96.5% on the testing set. Moreover, the Adamax
algorithm has the least loss value in both training and testing process. However, the Nadam algorithm has the
highest loss value among all of the employed algorithms in both training and testing processes. These results
are in agreement with the results that are presented in Figure 5. Figure 5 shows an exhaustive comparison of
the classification accuracy evolution through the epochs employing various optimization algorithms using the
MNIST database with a batch size of 128 and categorical cross entropy as loss function for both training and
testing sets. The Adamax and the Nadam algorithms with values of 96.61% and 94.52% have shown the highest
and the lowest values for classification accuracy. It should be noted that the deviation between the highest and
the lowest classification accuracies is roughly 2%. However, this deviation in the performance of the deep model
would be dramatically different due to the stability of the model based on different optimization algorithms.
Additionally, the wall-clock time for the training process using the discussed algorithms is presented in Figure 6.
Nadam has the most and SGD the least training time (102 seconds). It should always be a balance between the
amount of time needs to be spent for running a model and the desired accuracy. For instance, as seen in Figure
6, the SGD has the least computational run-time with a value of 95.97% accuracy which is quite the same as the
Adamax performance with training time value of 184.97 seconds.

Figure 7 presents an exhaustive comparison of three loss metrics including mean-absolute-error (MAE), mean-
square-error (MSE), and categorical cross entropy (CCE) using three different learning rates (η) 0.1, 0.01, and
0.001 through 100 epochs employing Adamax optimization algorithm using the MNIST database with a batch
size of 128 for both training and testing sets. As seen, the evolution of the loss metrics are getting smoother as
the learning rates got smaller. In addition to this, Figure 8 illustrates an exhaustive comparison of the training
time and the testing accuracy using three loss metrics including MAE, MSE, and CCE using three different
learning rates (η) 0.1, 0.01, and 0.001 through 100 epochs employing Adamax optimization algorithm using the
MNIST database with a batch size of 128 for both training and testing sets. As seen, employing larger learning
rates requires much more time for the training process. This amount of time has not necessary been spent to
get better results as seen in Figure 7. In addition to this, as the learning rate got smaller, the numbers of step
size were increased. Therefore, the training and testing evolution plots got smoother in comparison to larger
learning rates as shown in Figure 7.

Figure 9 presents an exhaustive comparison of three loss metrics including MAE, MSE, and CCE using
three different batch sizes 16, 64, and 256 through 100 epochs employing Adamax optimization algorithms with
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Figure 7. The impact of learning rate on loss evolution of the simple model.

Figure 8. The impact of learning rate on loss evolution of the simple model: Training time vs testing accuracy.

a learning rate of 0.001 using the MNIST database for both training and testing sets. Furthermore, Figure
10 depicts an exhaustive comparison of training time and testing accuracy using three loss metrics including
MAE, MSE, and CCE using three different batch sizes 16, 64, and 256 through 100 epochs employing Adamax
optimization algorithms with a learning rate of 0.001 using the MNIST database for both training and testing
sets. As seen employing a small batch size requires more training time with better results. In other words, it is
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Figure 9. The impact of batch size on loss evolution of the simple model.

Figure 10. The impact of batch size on loss evolution of the simple model: Training time vs testing accuracy.

a trade-off between computational training time and testing accuracy. The training time and the size of batches
have inverse correlation. As the size of batches increases, the training time decreases accordingly. Moreover, it
should be noted that the CCE as the loss metric would be the best choice for simple models as shown in Figure 8
and Figure 10. Figure 11 shows an exhaustive comparison of the loss (MSE) and classification accuracy evolution
through 100 epochs for both training and testing sets of the MNIST database using the deep model. In this part,
SGD was employed as the optimization algorithm and the impact of the learning rate is depicted in Figure 11.
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Figure 11. Impact of learning rate on the performance of the deep model: Loss vs accuracy.

Figure 12. Impact of batch size on the performance of the deep model: Loss vs accuracy.

In addition to this, the impact of different batch sizes on the performance of the deep model was investigated.
In contrast to the performance of the simple model, the deep model with a smaller learning rate showed the best
performance with a classification accuracy of 97.50%. The question should be addressed here will be do we get
the same results with employing the other types of optimization algorithms like the simple model? The answer
is a ”Big No”. Employing another algorithm such as Adam with the same learning rate would end up with a
over-fitted model with a classification accuracy of less than 20% on the testing set. In fact, as the structure of
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the networks gets more complex, the numbers of choices for hyper-parameters would get smaller accordingly. In
other words, as the topology of the network gets deeper, the surface of the cost function gets more complicated
and not all of the optimization algorithms can track all of the extrema points on the cost surface. That is why
the optimization of the hyper-parameters in deep neural network is critical and important. Additionally, the
strategy to optimize the hyper-parameters is more important. For example, for the deep model in this paper,
there are 575, 050 parameters to optimize which will be a rough, tedious, and time-consuming process for an
array of choices for each of the hyper-parameters. In addition to this, Keskar and Socher36 have indicated that
the optimization algorithms with adaptive learning rates have been found to generalize poorly compared to SGD
algorithm.

”Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the
beginning (Winston Churchill).”

6. CONCLUSIONS

A powerful deep learning pipeline, intelligent deep learning (iDeepLe) is proposed for both regression and clas-
sification tasks. iDeepLe is written in Python with the help of various API libraries such as Keras, TensorFlow,
Scikit-Learn, and Apache Spark. iDeepLe has the ability of employing exhaustive grid search, random search,
and Bayesian optimization to optimize the hyper-parameters in the deep model via adaptive learning rate op-
timization algorithms for both accuracy and complexity, while simultaneously solving the unknown parameters
of the regression or the classification model. iDeepLe is shown to be a suitable tool to generate solid models for
complex nonlinear systems. In this paper, an exhaustive investigation of the various hyper-parameters such as
learning rate, loss function, score metric, batch size, and optimization algorithm employing two designed models:
a simple and a complex neural networks topologies tested on MNIST database was carried out. This study
highlights the key-points of hyper-parameters tunning in both simple and deep neural networks structures.
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