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ABSTRACT

Imaging connectomics emerged as an important field in modern neuroimaging to represent the interaction of
structural and functional brain areas. Static graph networks are the mathematical structure to capture these
interactions modeled by Pearson correlations between the representative area signals. Dynamical functional
resting state networks seen in most fMRI experiments can not be represented by the classic correlation graph
network. The changes in brain connectivity observed in many neuro-degenerative diseases in longitudinal data
series suggest that more sophisticated graph networks to capture the dynamical properties of the brain networks
are required. Furthermore, certain brain areas seem to act as ”disease epicenters” being responsible for the
spread of neuro-degenerative diseases. To mathematically describe these aspects, we propose a novel framework
based on pinning controllability applied to dynamic graphs and seek to determine the changes in the ”driver
nodes” during the course of the disease. In contrast to other current research in pinning controllability, we aim
to identify the best driver nodes describing disease evolution with respect to connectivity changes and location
of the best driver nodes in functional 18F-Fluorodeoxyglucose Positron Emission Tomography (18FDG-PET)
and structural Magnetic Resonance Imaging (MRI) connectivity graphs in healthy controls (CN), and patients
with mild cognitive impairment (MCI), and Alzheimer’s disease (AD). We present the theoretical framework for
determining the best driver nodes in connectivity graphs and their relation to disease evolution in dementia. We
revolutionize the current graph analysis in brain networks and apply the concept of dynamic graph theory in
connection with pinning controllability to reveal differences in the location of ”disease epicenters” that play an
important role in the temporal evolution of dementia. The described research will constitute a leap in biomedical
research related to novel disease prediction trajectories and precision dementia therapies.
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1. INTRODUCTION

Novel mathematical concepts such as graph theoretical techniques can capture the brain connectivity and its
topology.1–3 These graph networks are mostly based on Pearson correlation and are capturing either the struc-
tural and/or functional brain connectivity. From these graphs, new descriptors can be derived to quantify induced
changes in topology or network organization, or serve as theory-driven biomarkers to predict dementia at the
level of the individual patient. Most graph networks applied to dementia research, even for longitudinal data
are static graph networks, which cannot capture the dynamical processes governing the temporal evolution of
dementia. Therefore, a new paradigm in dementia research - dynamical graph networks - is required to advance
this field and overcome the obstacles posed by static graph theory in terms of disease prediction, evolution,
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and its associated connectivity changes. We pioneered the fusion of modern dynamic graph network theory and
modeling strategies at different time scales with pinning control of complex neural networks in brain connectiv-
ity networks.4 Tahmassebi et al.5,6 established a transformational paradigm in dementia research investigating
disease evolution and treatment response at the patient level revealing several central mechanism in a network
that drives alterations in dementia. We modeled and analyzed functional connectivity networks in dementia as
two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the
interconnections between hubs and the slow sub-system. Alterations in brain function as seen in dementia can
be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact
they have on the large-scale dementia dynamic system. Controlling regions in dementia networks represent key
nodes to control the dynamics of the network. It seems to be crucial to understand how this complex network
is controlled to enable an understanding of the progressive abnormal neural circuits in dementia. Figure 1
demonstrates the schematic presentation of an unweighted-undirected graph of complex networks in brain.

Figure 1. Schematic illustration of unweighted-undirected graph of complex networks in brain. Nodes or vertices can be
brain regions or voxels. Edges or links are the functional or structural connections between nodes.7

While static graph analysis revealed the loss of strong connections in dementia patients compared to healthy
controls, the dynamic graph analysis revealed different slow modes between dementia patients and connectivity
networks in healthy controls. The connectivity networks in healthy controls have smaller eigenvalues than
in dementia patients for both functional and structural data and those eigenvalues remain operative. The
contribution of the larger eigenvalues over time decreases quickly and the range of the eigenvalues for each
subject represents an important biomarker for disease prediction.

To further contribute to the theoretical progress of the analysis of the dynamical behavior in dementia,
we propose a new research avenue based on pinning controllability and selection of the best driver nodes in
connectivity graphs that show a transaction from normal subjects to Alzheimer’s subjects. We will address this
issue by choosing a technique recently developed by Moradi Amani et al.8 in pinning control and apply it to the
analysis of these networks.

Brain networks represent an important model for a large-scale system and its associated aspect of synchro-
nization across many neural ensembles has been shown to play a key role in the evolution of neuro-degenerative
diseases.9–13 Among the many research topics on brain networks, synchronization control has been of particular
interest to computational neuroscience and control engineering.14–16 Global pinning synchronization was first
studied by Wang and Chen17 in 2002, but nowadays one very interesting research initiative in this area is pinning
observability of complex networks.18

The research described in this paper can be viewed as part of the ongoing interest in pinning observability
applied to brain network where the nodes of the neural network are coupled linearly and diffusively. The problem
considered here is the duality of the ”pinning control” problem19–21 and the goal is to observe the entire state of
the neural network just from information available at only a subset of nodes. This ”pinning observer” problem
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has been recently formulated by Yu et al.18 and the work described in this paper extends the results presented by
Moradi Amani et al.8 by analyzing the functional (18FDG-PET) and the structural (MRI) connectivity graphs22

for CN, MCI and AD patients. By applying the new concept of ”pinning observability”, we observe a small
number of neurons such that the states of the other neurons can be recovered. Identifying the best driver nodes
- those that give the fastest synchronization to the reference state - has been a challenge in pinning control
research and has been for the first time proposed by Moradi Amani et al.8 In the present paper, we apply this
novel concept of pinning controllability to the important requirement of identifying the best driver nodes with
functional (18FDG-PET) and structural (MRI) connectivity graphs22 for CN, MCI, and AD patients.

2. DETERMINING THE MOST INFLUENTIAL NODES IN PINNING
CONTROLLABILITY OF CONNECTIVITY NETWORKS

We consider an undirected and unweighted network (V,E) with the set of N nodes (or vertices) V and a set of
edges E. Each node is assumed to be a dynamical system with the following dynamical equation:

dxi
dt

= F (xi)− σ
N∑
j=1

lijHxj (1)

where xi ∈Rn is the n-dimensional state vector, F : Rn → Rn defines the individual systems dynamical
equation, which is considered identical for all nodes in this paper, and σ represents unified coupling strength.
L = [lij ] = D−A is the Laplacian matrix of the graph (V,E), where A is the adjacency matrix and D is a diagonal
matrix of nodes degrees. Non-zero elements of H determine the coupled elements of the oscillators. The pinning
control objective is to synchronize all nodes to the following desired state (i.e. x1(t) = x2(t) = · · · = xN (t) = s(t)):

d(s(t))

dt
= F (s(t)) (2)

In order to pin the dynamical network to this reference, the following control system should be designed:

dxi
dt

= F (xi)− σ
N∑
j=i

lijHxj + βiui i = 1, 2, 3, · · · , N (3)

where ui is the control signal and βi = 1 for driver nodes, otherwise βi = 0. The system can be linearized
over an equilibrium point xe as follows:

dzi
dt

= [DF (xe)− σλiH]zi + βiui i = 1, 2, 3, · · · , N (4)

where D stands for the Jacobian, λi is the ith eigenvalue of the Laplacian matrix of the graph. In order to
find the node with the most influence on pinning controllability, we restate the following definition and lemma.8

Definition: For each node i of the undirected network (V,E), the Eigenratio Sensitivity Index (ESI) is
defined as:

ESI(i) = [xiN ]2 (5)

where xiN represents the ith element of xN , the eigenvector corresponds to the largest eigenvalue of the
Laplacian matrix (λN ).

Lemma 1: In the undirected network (V,E), the node with maximum ESI has the strongest influence on
pinning controllability of complex network.8
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Figure 2. The most influential driver nodes (shown in red) in functional connectivity graphs for (a) CN, (b) MCI and (c)
AD. Re-drawn from Ortiz et al.22

3. LOCATION OF THE MOST INFLUENTIAL NODES IN STRUCTURAL AND
FUNCTIONAL CONNECTIVITY GRAPHS

We apply the theoretical results on functional (18FDG-PET) and structural (MRI) connectivity graphs22 for
CN, MCI, and AD patients. These data were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI)∗database. For the structural MRI data, the connections in the graph show the inter-regional covariation
of gray matter volumes in different areas while for the functional PET data, the connections do not show the
correlation in activity but in the glucose uptake between different regions. Ortiz et al.22 considered only 42 out

∗https://adni.loni.usc.edu/
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Figure 3. The most influential driver nodes (shown in red) in structural connectivity graphs for (a) CN, (b) MCI and (c)
AD. Re-drawn from Ortiz et al.22

of the 116 from the AAL in the frontal, parietal, occipital, and the temporal lobes. The nodes in the graphs
represent the regions while the links show if a connection is existing between these regions or not. We have
considered undirected and unweighted graphs previously presented by Ortiz et al.22 and have applied the ESI
metric on these graphs. Except for the functional connectivity graph for CN, we were able to apply the ESI
metric on all the other graphs. We considered the biggest connected graph in the functional connectivity graph
for AD. Figure 2 shows the most influential driver nodes found on the functional connectivity graph. For CN due
to the disconnectivity of the graph, we were not able to theoretically determine the best driver nodes. For MCI
the best driver node is located in the inferior left occipital lobe (Occipital-Inf-L), and for AD in the superior right
occipital lobe (Occipital-Sup-R). Early-onset AD is characterized by changes in the functional connectivity in
the occipital lobe. Figure 3 shows the most influential driver nodes found on the structural connectivity graph.
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For all three networks, we found that the most influential node is located in the temporal lobe (Temporal-Pole-
Mid-L). These results are in agreement with the clinical findings which show that the MCI patients who are at
risk to develop AD show medial temporal lobe atrophy. The detection of this important driver node being at
the same time the most influential one may represent an important biomarker of the diagnosis of AD and its
transition from MCI to AD.

4. DISCUSSION

We analyzed structural and functional connectivity graphs in normal CN, MCI and AD patients to determine
the most influential driver nodes or so-called ”disease epicenters”. The new paradigm of pinning controllability
borrowed from modern graph control theory applied to the study of the evolution of dementia is a novel and
simple tool that can be used in dementia diagnosis. The location of the most influential driver node provides
the scientific community with a novel biomarker that can be employed in differentiating dementia types and
to monitor disease evolution. Initial results were in good agreement with preliminary clinical findings. While
static graph theory shows the changes in graph measures at certain points in time and the differences between
AD patient and CN, the derived results may have important implication in the discovery of relevant biomarkers
leading to an improved understanding and controlling of the evolution of dementia that consequently can aid in
the development of therapeutic interventions. Thus, by applying pinning controllability in disease connectivity
networks, a new research path is chosen that allows to study in more detail the early-onset of AD disease and
the evolution from MCI to AD by providing precise biomarkers in these patients.

5. CONCLUSIONS

This paper aims at extending the novel concept of pinning controllability under the important requirement of
identifying the best driver nodes to functional (18FDG-PET) and structural (MRI) connectivity graphs for CN,
MCI, and AD patients. Data indicate:

1. The connections in the structural graphs illustrate the inter-regional covariation of gray matter volumes in
different areas.

2. The connections in the functional graphs do not illustrate the correlation in activity. However, they show
the correlation in the glucose uptake between different regions.

3. ESI metric has been applied on undirected and unweighted functional graphs. The biggest connected graph
has been considered in the functional connectivity graph for AD. For MCI the best driver node is located
in the occipital lobe (Occipital-Inf-L), and for AD also in the occipital lobe (Occipital-Sup-R). Early-onset
AD can be characterized by changes in functional connectivity in the occipital lobe.

4. ESI metric has also been applied on undirected and unweighted structural graphs. For all CN, MCI, and
AD networks, we have found that the most influential node was located in the temporal lobe (Temporal-
Pole-Mid-L) which is in agreement with the clinical findings which show that MCI patients who are at risk
to develop AD show medial temporal lobe atrophy.

5. In this paper, a novel research path is proposed to apply pinning controllability in disease connectivity
networks to provide precise biomarkers for patients who suffer from Alzheimer’s disease and control the
dynamics of the evolution of the disease.
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