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ABSTRACT

Graph network models in dementia have become an important computational technique in neuroscience to study 
fundamental organizational principles of brain structure and function of neurodegenerative diseases such as 
dementia. The graph connectivity is reflected in the connectome, the complete set of structural and functional 
connections of the graph network, which is mostly based on simple Pearson correlation links.

In contrast to simple Pearson correlation networks, the partial correlations (PC) only identify direct corre-
lations while indirect associations are eliminated. In addition to this, the state-of-the-art techniques in brain 
research are based on static graph theory, which is unable to capture the dynamic behavior of the brain connec-
tivity, as it alters with disease evolution. We propose a new research avenue in neuroimaging connectomics based 
on combining dynamic graph network theory and modeling strategies at different time scales. We present the 
theoretical framework for area aggregation and time-scale modeling in brain networks as they pertain to disease 
evolution in dementia. This novel paradigm is extremely powerful, since we can derive both static parameters 
pertaining to node and area parameters, as well as dynamic parameters, such as system’s eigenvalues. By im-
plementing and analyzing dynamically both disease driven PC-networks and regular concentration networks, we 
reveal differences in the structure of these network that play an important role in the temporal evolution of this 
disease. The described research is key to advance biomedical research on novel disease prediction trajectories 
and dementia therapies.
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1. INTRODUCTION

Novel mathematical concepts such as graph theoretical techniques can capture the brain connectivity and its
topology.FZPB12,GT12,ZSL+12 These graph networks are mostly based on Pearson correlation and are capturing
either the structural and/or functional brain connectivity. From these graphs, new descriptors can be derived to
quantify induced changes in topology or network organization, or serve as theory-driven biomarkers to predict
dementia at the level of the individual subject.

While most graph networks applied to dementia research, even for longitudinal data are static graph networks,
which cannot capture the dynamical processes governing the time evolution of dementia. Therefore, a new
paradigm in dementia research - dynamical graph networks - is required to advance this field and overcome the
obstacles posed by static graph theory in terms of disease prediction, evolution, and its associated connectivity
changes.
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To address this important issue of analyzing the dynamical behavior, we propose a simplified method re-
sulting in a model of lower complexity. Balanced truncation is known as the standard method for model reduc-
tion.Moo81 It is based on a state–space point of view of employing the well–known observability and controllability
GramiansMBTC11,LMG02,Sch93 and related to the past input energy (controllability) and future input energy (ob-
servability). While for linear systems this procedure is pretty straightforward, for nonlinear systems balancing
truncation becomes in general not a simple task.MB08,MBT08a However they are not quite efficient in terms of
model reduction for large-scale networks. For brain connectivity models, we require a structure preservation be-
tween subsystems and at the same time, a network topology-preserving mechanism to provide model reduction.
We will address this issue by choosing a technique based on an area aggregation and time-scale modeling for
sparse brain networks with densely interconnected hubs and externally sparse interconnections between these
hubs. InCK85 was shown that the neurons in the hubs synchronize on the fast time-scale and as aggregated neu-
rons determine the slow dynamics of the neural network. We apply our novel concepts on connectivity networks
from.WJM+12 There was the morphometry-based connection concept with cortical gray matter thickness has
been applied. 645 automatically parcellated cortical volumes were derived to study the underlying architecture
of the brain network. The connectivity matrices from the concentration method of calculating a partial corre-
lation (PC) and a modified version of the PC algorithm, the so-called P∗WJM+12 were analyzed in terms of a
reduced-model approximation over time for the left and right hemisphere. Gray matter thickness is known to
play an important role in Alzheimer’s disease,

2. REDUCED-MODEL APPROXIMATION OVER TIME

The idea of two-time scale systems has been widely studied in connections with dynamical systems.SK84,MBRT10,MBRY07,MBKEG09,

Graph networks that exhibit a structure of dense clustered areas but have sparse connections between these
areas can be dynamically approximated by a two-time scale system, where the neurons within the same area
synchronize on the fast time-scale, because the dense within-area connections drive the nodes of the given area
quickly to reach an equilibrium.

At the same time, the exchange between the areas is based on sparse connections and can be described at
a slow time-scale. This coupled dynamics leads to a reduced-order model describing the long-term behavior of
the overall network. The large-scale brain network is viewed as an interconnected graph with links between the
areas which are viewed as nodes in the graph. Two main parameters are describing such a network:CK85 the
node parameter d and the area parameter δ. The node parameter is given as:

d =
cE

cI
≪ 1 (1)

where cE are the densest external links over all nodes and areas and cI are sparsest internal links over all
existing areas. d needs to be a small number. The area parameter is given as

δ =
γE

mcI
≪ 1 (2)

where γE are the densest external links over all areas and m is the minimal number of nodes found in an
area.

In order to obtain a reduced-model approximation we view the large-scale graph as a structured representa-
tions with dense areas (clusters) and sparse interconnections between these areas.CK85

The network connections kij are defined as

kij =

{

1, : if the link exists between two nodes
0 : if no link

(3)
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We assume having a connectivity network of N nodes and M total links yielding thus a N × M incidence
matrix K describing this network. The above formulated objectives are achieved by the following network
architecture

ẋi = −
M
∑

i=1

kikθk, i = 1, · · · , N (4)

where θk represents the difference variable

θk :=

N
∑

l=1

klkxl =

{

xm − xn : if m is the positive end,
xn − xm : if n is the positive end

(5)

We assume that we have a N -node network with r internally dense regions but sparsely connected. Each area
has mα neurons with α = 1, 2, · · · , r and the vector xα = [xα

1 · · ·xα
mα

] contains all neural activities in the area
α. Then we define the slow variableCK85,BA08 representing an aggregate region as

yα :=

mα
∑

i=1

xα
i

mα

=
1

mα

uT
αx

α (6)

and in matrix representation, we obtain

y = M−1
a UTx (7)

with Ma = diag(m1,m2, · · · ,mr) and U = diag(u1, u2, · · · , ur) where each ui is an mα-vector of 1’s.

The fast variable zα is given as the transformation of the differences between the activation of the neurons
in the same regionCK85,BA08

zα = Qαx
α (8)

and in matrix formulation we have the fast z (N − r)-vector with z = [zT1 z
T
2 · · · zTr ]

z = Qx (9)

with Q = diag(Q1, Q2, · · · , Qr) being an (N − r) ×N block diagonal matrix.

We have thus defined a new transformation of the original neural activationX into a slow and fast variableBA08

(

y
z

)

=

(

M−1
α UT

Q

)

x (10)

We assume K = KI +KE with KE being the external and KI being the internal connection matrix.

The linear singular perturbed system is given as

(

ẏ
ż

)

=

(

CKEU CKEQT · (QQT )−1

QKEU Q(KI +KE)QT · (QQT )−1

)

·
(

y
z

)

(11)

where

(

CKEU CKEQT · (QQT )−1

QKEU Q(KI +KE)QT · (QQT )−1

)

=

(

Ã11 Ã12

Ã21 Ã22

)

(12)
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We can determine the time-scale model by defining the fast and slow time-scales

tf = cIt and ts = δtf (13)

and rescaling the matrices Aii as

A11 =
Ã11

cIδ
A12 =

Ã12

cIδ

A21 =
Ã21

cId
A22 =

Ã22

cI

(14)

leading to a new system

dy

dts
= A11y +A12z

δdz

dts
= dA21y +A22z

(15)

The above model (15) applies to large-scale brain networks for sufficiently small network parameters δ and
d. The theoretical results fromCK85 state that the neurons in the same region synchronize in fast time-scale,
leading to a substitute aggregate neuron in the slow time-scale.

The above results are summarized in the theorem proven in.CK85

Theorem 2.1.
CK85 There are δ∗ and d∗ such that for all 0 < δ ≤ δ∗, 0 < d ≤ d∗ the system in equation (15)

has r slow eigenvalues and n− r fast eigenvalues. The fast and slow subsystems are given as

dys
dts

= (A11 − dA12A
−1
22 A21)ys = A0ys, ys(0) = y(0)

dzf
dtf

= A22zf , zf (0) = z(0) + dA−1
22 A21y(0).

(16)

InCK85 was mentioned a simplified formulation of the slow system, the so-called aggregate system given as

Ma

dys
dt

= Kays (17)

with Ka = UTKEU .

3. PEARSON CORRELATION AND PARTIAL CORRELATION NETWORKS

The standard measure of pairwise correlations are Pearson product-moment correlation coefficients P = (ρij),
which quantify the linear dependency between two variables li and lj . Pearson correlation networks have been

widely applied in imaging connectomicsFZPB12,WRT+12 and in addiction research.YZQ+11,SEF+16,LYR+12,TNM+11

A common problem of Pearson correlation coefficients are indirect effects giving rise to a plethora of unspecifically
high correlation coefficients. Partial correlation networks attempt to estimate conditional dependencies between
measured variables over all samples rather than marginal dependencies, thereby eliminating such indirect corre-
lations. To generate such a network, the number of samples with respect to the number of variables determine
the approach used for the calculation. If the number of samples n exceeds the number of variables p, full-order
partial correlations Z = (ζij) can be calculated in a straight-forward manner from the inverse of the covariance
matrix P as Ω = (ωij) = P−1 and Z = (ζij) = −ωij/

√
ωiiωjj . A PC graph is an undirected graph obtained by

partial correlation calculation with subsequent statistical testing for edge significance. The graph nodes represent
the measured variables whereas the edge weights correspond to significant partial correlation coefficients found
in the biochemical experiment. In,WJM+12 a novel and more robust algorithm, the PC∗ is described, a graph
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pruning algorithm for identification of the partial correlation network. A comparison is performed in terms of
graph topology in comparison to a network stemming from the direct calculation of partial correlations from the
inverse of the sample correlation matrix. The latter one is called the concentration graph.

4. RESULTS OF THE DYNAMICAL GRAPH ANALYSIS OF THE
CONCENTRATION AND PC∗ CONNECTIVITY NETWORK OF CORTICAL

THICKNESS

We apply the theoretical results on structural concentration and PC∗ connectivity graphsWJM+12 for the lateral
views of the left and right hemispheres. For the connectivity networks, the cortical gray matter thickness derived
from 645 automatically parcellated cortical volumes is analyzed. The covariation in cortical thickness in ROIs
defined on a parcellated cortex is represented in such graphs either as a simple concentration or as a PC∗. The
nodes in the graphs represent the ROIs while the links show if a connection is existing between these regions or
not.

Figure 1 shows the clusters found on the functional data for the lateral view of the left and right hemispheres.
We perform a time-scale modeling and area aggregation with two main areas on the four functional networks
from Figure 1. For three graphs we can apply Theorem 1, however for the concentration graph, lateral view of
left hemisphere, we are not able to obtain an area aggregation since the conditions in Theorem 1 are not satisfied.

Figure 1. Areas of the connectivity graph for the concentration and PC∗ graphs for the left and right hemispheres. Figure

adapted from.WJM
+
12
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The results of the in-depth dynamical analysis are shown in Table 1. The PC∗ show smaller node and area
parameters than the concentration graphs. But most importantly, both the exact, as well as the rigid aggregate
model as shown in equation (17) show the same eigenvalues for both graphs of the right hemispheres.

Correlation Node Area Slow λ Slow λ
Parameter d Parameter δ exact system rigid aggregate system

Pearson Corr. left dave = 0 δ = 0 N/A N/A
PC left dave =

1
6

δ = 1
12

λi = {0,−4} λi = {0,−25/77}
Pearson Corr. right dave =

4
7

δ = 2
7

λi = {0,−8} λi = {0,−50/63}
PC right dave =

1
2

δ = 1
4

λi = {0,−8} λi = {0,−50/63}
Table 1. Area aggregation parameters and time-scale modeling for correlation graphs from Figure 1. The graphs are for

the left and right hemisphere.

While the results obtained through PC∗ show a better aggregated structure than the concentration graph
in terms of node and area parameter, the dynamic graph analysis reveals no different slow modes between
concentration and PC∗. The eigenvalues in the right hemisphere are larger than those in the left hemisphere.
The contribution of the larger eigenvalues over time decreases quickly. The range of the eigenvalues for each
subject represents an important biomarker for disease prediction. By providing an area and node parameter, we
are able to add additional static graph descriptors to the dynamic biomarkers.

5. DISCUSSION

We applied the new concept of time-scale modeling for sparse networks on graph networks of the cortical thickness
between ROIs based on two different PC concepts: the standard concentration matrix concept and a more robust
PC∗ concept. Our results confirmed the more aggregated structure obtained through the PC∗ graph network
compared to the standard one, however showed that in terms of dynamics both graphs yield the same dynamical
behavior or disease trajectory. It’s important to point out that the left hemisphere has a faster dynamics than the
right hemisphere meaning that more changes are expected there. While static graph theory shows the changes
in graph measures at certain points in time and the differences between disease and normal control, the derived
results may have important implication for understanding and controlling the evolution of dementia that may
further lead to better therapeutic interventions. Thus by describing the dynamic of the aggregate areas and the
resulting time-scale modeling in a brain network, a new research initiative is taken that allows to study in more
detail the differences in terms of morphometry between disease and healthy groups and provides a wider variety
of characteristic parameters over time for those groups.
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