
RESEARCH ARTICLE

Multi-stage optimization of a deep model:

A case study on ground motion modeling

Amirhessam TahmassebiID
1*, Amir H. GandomiID

2, Simon Fong3, Anke Meyer-Baese1,

Simon Y. Foo4

1 Department of Scientific Computing, Florida State University, Tallahassee, Florida 32306-4120, United

States of America, 2 School of Business, Stevens Institute of Technology, Hoboken, New Jersey 07030,

United States of America, 3 Department of Computer Science and Information Science, University of Macau,

Taipa, Macau, 4 Department of Electrical and Computer Engineering, FAMU-FSU College of Engineering,

Tallahassee, Florida 32310-6046, United States of America

* atahmassebi@fsu.edu

Abstract

In this study, a multi-stage optimization procedure is proposed to develop deep neural net-

work models which results in a powerful deep learning pipeline called intelligent deep learning

(iDeepLe). The proposed pipeline is then evaluated by a challenging real-world problem, the

modeling of the spectral acceleration experienced by a particle during earthquakes. This

approach has three main stages to optimize the deep model topology, the hyper-parameters,

and its performance, respectively. This pipeline optimizes the deep model via adaptive learn-

ing rate optimization algorithms for both accuracy and complexity in multiple stages, while

simultaneously solving the unknown parameters of the regression model. Among the seven

adaptive learning rate optimization algorithms, Nadam optimization algorithm has shown the

best performance results in the current study. The proposed approach is shown to be a suit-

able tool to generate solid models for this complex real-world system. The results also show

that the parallel pipeline of iDeepLe has the capacity to handle big data problems as well.

Introduction

Development of the first computational model based on artificial neural networks (ANN) with

application to artificial intelligence (AI) might date back to a model built in 1943, which was

inspired from biology to simulate how the brain works [1]. Neurons in the perceptual system

represent features of the sensory input. The brain has a deep architecture and learns to extract

many layers of features, where features in one layer represent combinations of simpler features

in the layer below and so on. This is referred to as feature hierarchy. Based on this idea, several

architectures for the topology of the networks such as layers of neurons with fully/sparse con-

nected hidden layers were proposed. Two essential questions to ask are: How can the weights

that connect the neurons in each layer be adjusted? How many parameters should we find and

how much data is necessary to train or test the network?

Shallow neural networks were the models before 2006 due to the failure of deep neural net-

works at training/testing data due to the lack of computational equipment. The revolution in

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Tahmassebi A, Gandomi AH, Fong S,

Meyer-Baese A, Foo SY (2018) Multi-stage

optimization of a deep model: A case study on

ground motion modeling. PLoS ONE 13(9):

e0203829. https://doi.org/10.1371/journal.

pone.0203829

Editor: Ivan Olier, Liverpool John Moores

University, UNITED KINGDOM

Received: March 24, 2018

Accepted: August 28, 2018

Published: September 19, 2018

Copyright: © 2018 Tahmassebi et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

available at: https://doi.org/10.6084/m9.figshare.

7037609.v1.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0003-4677-6907
http://orcid.org/0000-0002-2798-0104
https://doi.org/10.1371/journal.pone.0203829
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203829&domain=pdf&date_stamp=2018-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203829&domain=pdf&date_stamp=2018-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203829&domain=pdf&date_stamp=2018-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203829&domain=pdf&date_stamp=2018-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203829&domain=pdf&date_stamp=2018-09-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203829&domain=pdf&date_stamp=2018-09-19
https://doi.org/10.1371/journal.pone.0203829
https://doi.org/10.1371/journal.pone.0203829
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.7037609.v1
https://doi.org/10.6084/m9.figshare.7037609.v1

deep neural networks began with Hinton’s Deep Belief Networks (DBN) based on Restricted

Boltzmann Machines (RBM) [2] as well as Bengio’s Greedy Layer-Wise Training of Deep Net-

works [3]. This was a breakthrough in learning deep architectures using different perspectives

of optimization. Deep learning models involve optimization from the first day of appearance

of neural networks. For example, [4] proposed Support Vector Machines (SVM) just by

employing a smart optimization algorithm in implementing the single layer perceptron, which

is still one of the best methods implemented in machine learning. This highlights the impor-

tance of the optimization algorithms in development of the deep neural topologies. Deep

learning explores complicated structures especially in big data problems with the help of the

backpropagation optimization algorithm to compute the hyper-parameters involved in the

network [5].

Emerging as one of the most contemporary machine learning techniques, deep learning has

shown success in areas such as image classification, speech recognition, and even playing

games through the use of hierarchical architecture which includes many layers of non-linear

information [6] [7] [8]. Availability of huge amounts of training data, powerful computational

infrastructure, and advances in academia could be named as the three main bedrocks of

recent deep learning success. This encourages the development of deep learning models to be

applied to real-world problems. Importantly, we live in an era where we have sufficient

computational equipment and cutting-edge technologies that allow us to better optimize the

hyper-parameters involved in deep neural networks. However, developing new deep models

for classification or regression tasks to solve real-world problems still demands robust optimi-

zation techniques [9] [10]. It should be noted that, at this point, there is no consensus on

choosing the right optimization method based on the network topology and architecture [6].

One of the most famous projects in the ground motion modeling is the Next Generation

Attenuation of Ground Motion (NGA) [11] model which tries to formulate the experienced

particles (e.g. buildings) motions during earthquake. The NGA project is a multidisciplinary

research program coordinated by the Lifelines Program of the Pacific Earthquake Engineering

Research Center (PEER) (http://peer.berkeley.edu/), in partnership with the U.S. Geological

Survey (https://earthquake.usgs.gov/) and the Southern California Earthquake Center (https://

scec.org/) for purposes of seismic hazards assessment. For the NGA project, a comprehensive

database of strong ground-motions assembled by PEER [12].

In this paper, a powerful pipeline is developed in order to improve the NGA using deep

neural networks to predict spectral acceleration with continuous values based on the ground-

motion variables such as ground and earthquake parameters. The deep model is optimized in

multiple stages: 1) finding the most efficient topology of the network in terms of the number

of layers, number of neurons in each layer, and the activation function for each layer, 2) the

learning rates for each optimization methods, and 3) optimization of metric scores to see the

performance of the network. At last, the results are compared and validated with one of the

available famous NGA models [11] and some other machine learning approaches.

Deep learning model

In this section the proposed pipeline is introduced which consists multiple stages as shown in

Fig 1. In this pipeline, numerous layers of neurons inspired by sequential modeling were

stacked on each other to construct the core data structure of iDeepLe [13]. Each layer by

itself likewise the other neural layers contains cost function, learning rate, activation function,

and also some regularization layouts based on the employed optimization algorithm. The

important part and novelty of iDeepLe is that each layer in the sequential deep model can

perform independently as a module with minimum finitudes. In principle, each layer can

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 2 / 23

http://peer.berkeley.edu/
https://earthquake.usgs.gov/
https://scec.org/
https://scec.org/
https://doi.org/10.1371/journal.pone.0203829

interact with the other layers and does not limit the performance of the other layers. The pro-

posed pipeline, iDeepLe is written in Python with the help of various API libraries such as

Keras [14], TensorFlow [15], and Scikit-Learn [16] [17]. In the modeling architecture of

iDeepLe, all the benefits of the aforementioned API libraries have been combined to maxi-

mize the performance. In addition, due to the dynamic structure of iDeepLe, it is also capa-

ble of doing classification tasks.

As previously discussed, each model is a sequence of different layers and each layer is a fully

configurable module which requires different hyper-parameters including learning rate, stop-

ping criteria, batch size, number of epochs, and regularization rates. The arrangement of

hyper-parameter settings affects the performance of training phase of the model. For example,

the learning rate (step size) indicates how far we should step against the direction which has

the steepest rate of increase based on the gradient of the cost function. In addition to this, com-

puting the loss function over the entire training data, especially in cases dealing with large-

scale data would be costly. In this regard, employing a smart approach to compute the gradient

Fig 1. iDeepLe flowchart.

https://doi.org/10.1371/journal.pone.0203829.g001

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 3 / 23

https://doi.org/10.1371/journal.pone.0203829.g001
https://doi.org/10.1371/journal.pone.0203829

over batches of the training data and updating the weights would help us overcome this chal-

lenge. Furthermore, the core idea of a deep learning task is finding the weights through itera-

tive refinement. This means the number of epochs or iterations would also affect the stability

and performance of the network. Thus, at this point, the essential questions to be answered

are: 1) How can we design the topology of the networks in terms of width and depth? 2) What

should we choose as the learning rate, batch size, and number of epochs? 3) What is the best

way to optimize the cost function?

To encounter all of the aforementioned challenges and meet a reasonable confidence inter-

val for the results, we employed an exhaustive grid-search with cross-validation in three differ-

ent stages across all of the hyper-parameters to find the optimal performance. It should be

noted that each layer of the network requires a huge number of operations due to the various

number of tuned hyper-parameters and this would be further multiplied with the cost of the

other layers too. This would suggest writing the code using parallel algorithms and employing

high performance computing (HPC) and GPU-enabled machines overcome this challenge.

However, we have proposed a smart randomized search model as the second option in

iDeepLe for the people who do not have access to HPC machines. The grid-search can be

done across the number of layers, the number of neurons in each layer, the types of activation

functions, the types of cost functions, the different learning rates, the number of batch sizes,

the number of epochs, and the types of optimization algorithms. In general, the design of the

topology of the network and the choice of optimization algorithm seem to depend principally

on the user’s acquaintance with different types of neural networks and their knowledge about

optimization algorithms in terms of tunning the aforementioned hyper-parameters [6]. How-

ever, [18] have previously compared the performance of several optimization algorithms in

various learning tasks which suggested to us that some of these algorithms should be consid-

ered. Additionally, it should be noted that to reduce the possibility of over-fitting through the

optimization process, for each cross-validation, a stochastic random seed based on Numpy

library was used to generate a non-biased fold of data. This process has been done for each

three stages separately. In better words, the process of the finding of the best hyper-parameters

for this problem is totally data-independent.

In this pipeline, the exhaustive grid-search is wisely splitted into three stages with consider-

ing different constraints. Fig 1 demonstrates the flowchart of the proposed pipeline. In the first

stage, it is desired to optimize the topology of the network to find the number of layers, the

number of neurons in each layer, and the type of activation function for each layer. As the goal

of the second stage, the optimization of the learning rates for each of the optimization algo-

rithms is desired. Lastly, in the third stage, the performance of the model with the optimized

topology and learning rates is tested with different number of epochs and batch sizes for differ-

ent optimization algorithms. In this regard, the regression scores and losses are chosen as the

performance metrics.

As discussed, after loading the training data set, it is desired to optimize the topology of the

deep neural networks in terms of the number layers, the number of neurons in each layer, and

also the type of activation function which should be considered for each layer. In this regard, a

grid-search employing 10-folds cross-validation with fixed values for batch size, number of

epochs, and optimization algorithm was considered. Table 1 presents the details of the hyper-

parameters that were set for the optimization of the topology in the grid-search stage 1. Due to

the large number of operations, the parallel code ran on 20 nodes of HPC machines at FSU

Research Computing Center (RCC) (https://rcc.fsu.edu/). In addition, to accelerate the grid-

search process and ensure the stability of the network, some constraints were considered.

First, to optimize the numbers of neurons in the hidden layers, it is assumed that the number

of neurons in the lower layers cannot be more than the number of neurons in the top layers.

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 4 / 23

https://rcc.fsu.edu/
https://doi.org/10.1371/journal.pone.0203829

For example, if the layer two has 20 neurons, the number of neurons in the layer three should

be less than 20. It decreases the number of operations drastically (*O(n2)). For example, the

total computation time of the optimized architecture which contains 1962 trainable parame-

ters using a batch size of 50 through 1000 epochs was 287 seconds and the whole parallel calcu-

lation using 10-20 HPC nodes took *36 hours. In addition to this, since the metric which is

desired in this problem is the coefficient of determination and also the output, Ln(SA) was nor-

malized to have values between 0 and 1, one neuron was always considered in the last layer

with Sigmoid as the activation function. In this way, the model would always produce one out-

put which is between 0 and 1.

The architecture of the optimized model after the grid-search stage 1 is presented in Fig 2.

It contains 8 layers and each layer has 8, 30, 25, 20, 12, 8, 4, 1 neurons, respectively. The num-

ber of trainable parameters for each layer (starting from the first layer to the last layer) are 270,

775, 520, 252, 104, 36, and 5 with a total number of 1962 parameters. Each layer also requires

an activation function. In this deep architecture, Rectified Linear Unit (ReLU) [19], Softmax

[20], and Sigmoid [21] have been employed as the activation functions. The properties of the

activation functions used in different layers of the deep model are also discussed in Table 2. In

optimization section, we will discuss various numbers of optimization algorithms with the

hope of increasing the user’s familiarity with the optimization algorithms.

Optimization

Deep learning algorithms involve optimization in many contexts. The core idea of optimiza-

tion is finding the best weights w at each layer of the topology of the deep neural networks

with the hope that these weights increase the performance metric (decreasing cost) on the

entire training set [6]. It is clear that the whole procedure, similar to other machine learning

tasks, is indirect and the true distribution of the training data set is unknown. This is in con-

trast to the traditional optimization algorithms in which optimizing the pure function is the

direct goal. Assume the true distribution of the training data set is known and f(x) as well,

which turns into a simple pure optimization problem. To address this problem and find a way

to convert the machine learning task back into the pure optimization problem, the unknown

true distribution of the training data was substituted with the empirical distribution defined by

the training data and then the optimization algorithms were applied [6] [22].

Optimization by itself is an arduous and time-consuming problem. This general problem

becomes even more challenging once we are dealing with non-convex problems such as deep

Table 1. Parameters setting for the grid-search stage 1.

Hyper-parameter Settings

Number of layers 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20

Number of neurons in each layer 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50

Batch sizes 50

Number of epochs 1000

Activation functions ReLU, Tanh, Softplus, Softsign, Linear, Softmax, Sigmoid

Optimizers Adam

Learning rates 0.001

Losses MSE

Score metrics R

Number of HPC nodes 20

Number of folds in cross-validation 10

https://doi.org/10.1371/journal.pone.0203829.t001

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 5 / 23

https://doi.org/10.1371/journal.pone.0203829.t001
https://doi.org/10.1371/journal.pone.0203829

neural networks. In traditional machine learning algorithms, it is most common to set up

the objective function and constraints to avoid solving the general non-convex optimization

problems [23] [20]. Even in solving convex optimization problems, difficulties such as ill-con-

ditioning, local minima, saddle points, and steep cliff structures in gradients may be encoun-

tered and introduce further challenges. To emphasize the aforementioned challenges, we have

Fig 2. The architecture of the optimized deep neural network model.

https://doi.org/10.1371/journal.pone.0203829.g002

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 6 / 23

https://doi.org/10.1371/journal.pone.0203829.g002
https://doi.org/10.1371/journal.pone.0203829

employed seven optimization algorithms including basic algorithms and algorithms with

adaptive learning rates for the training of the deep models. Additionally, we have explained the

pros and cons of the pseudo codes using each as the optimization algorithm for training the

deep neural networks.

Stochastic gradient descent (SGD)

Employing gradient descent and its variants as the optimization algorithms for deep learning

and other machine learning tasks is probably the most frequent choice among users. Based on

the amount of the training data we assign to compute the gradient of the objective function,

there will be three different variants of gradient descent [24]. The first variant is vanilla gradi-

ent descent, also known as batch gradient descent. Here, the entire training data set is used for

calculation of the gradient of the cost function with respect to the weights. This process is fairly

slow and requires only one update due to the use of the entire data set (one update per epoch).

The second variant is stochastic gradient descent which performs an update for each of the

training instances which leads to redundant computational operations for fairly large data sets.

Finally, the third and also the popular variant, is mini-batch gradient descent which performs

an update for every mini-batch of size m training instances. It should be noted that mini-batch

gradient descent is the typical algorithm for training neural networks. The term SGD is usually

employed when the mini-batch gradient descent algorithm is used (like in this paper) [6] [24].

The pseudo code for SGD is shown in Algorithm 1.

Algorithm 1: SGD
Input: Training data S, learning rate η, weights w,
Output: Updated weights w
1 w w0;
2 while stopping criterion is not met do
3 Randomly shuffle the training data S;
4 Sample a minibatch of size m:{(x(1), y(1)), . . ., (x(m), y(m))} 2 S;
5 for i 2 {1, . . ., m} do
6 Ĝ @

@wi
costðw; ðxðiÞ; yðiÞÞÞ; Gradient calculation

7 end
8 w w � ZĜ;
9 end

Adaptive gradient (Adagrad)

Adagrad is another variant of gradient based optimization algorithms which has the ability of

adapting the learning rate based on the data characteristics at each iteration. It assigns lower

learning rates to the repetitive features and also higher learning rates to less repetitive features.

In this way, rare but possible features are being detected automatically. Algorithm 2 explains

the pseudo code for updating the parameters at each iteration. Applying the Adagrad algorithm

Table 2. Properties of the activation functions used in different layers of iDeepLe.

Function Equation Derivative Range

ReLU
f ðxÞ ¼

0 for x < 0

x for x � 0

(

f 0ðxÞ ¼
0 for x < 0

1 for x � 0

(
[0,1)

Softmax fið~xÞ ¼
expðxiÞPn

j¼1
expðxjÞ

@fið~x Þ
@xj
¼ fið~xÞðdij � fjð~xÞÞ (0, 1)

Sigmoid f ðxÞ ¼ 1

1þ expð� xÞ f 0ðxÞ ¼ expð� xÞ
½1þ expð� xÞ�2

(0, 1)

https://doi.org/10.1371/journal.pone.0203829.t002

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 7 / 23

https://doi.org/10.1371/journal.pone.0203829.t002
https://doi.org/10.1371/journal.pone.0203829

to any sparse training data set would show the high performance of this algorithm in prediction

of infrequent features in the training data set by adapting the learning rates dynamically [25]. It

would also outperform slow algorithms such as vanilla gradient descent once we are dealing

with big data problems. Conversely, the drawback is zero convergence for long iterations [6]

[24].

Algorithm 2: Adagrad
Input: Training data S, learning rate η, weights w, fuzz factor �,
learning rate decay over each update r
Output: Updated weights w
1 � �0 � 10−8;
2 w w0;
3 r 0;
4 while stopping criterion is not met do
5 Randomly shuffle the training data S;
6 Sample a minibatch of size m:{(x(1), y(1)), . . ., (x(m), y(m))} 2 S;
7 for i 2 {1, . . ., m} do
8 Ĝ @

@wi
costðw; ðxðiÞ; yðiÞÞÞ; Gradient calculation

9 end
10 r r þ Ĝ � Ĝ;

11 w w � Z

�þ
ffiffi
r
p � Ĝ;

12 end

Adaptive delta (Adadelta)

As explained in section 9, as we increase the number of epochs for longer iterations, the learn-

ing rate fails to converge to zero. To improve this, two main ideas are needed. The first idea is

restricting the past gradients for a fixed size instead of incorporating the whole historical gradi-

ent information. This approach scales the learning rate and avoids observing discontinuity in

the learning progress. The second idea is employing an acceleration term such as momentum

to process the first idea. Contradictory to the Adagrad algorithm, the Adadelta is insensitive to

hyper-parameters [26].

Algorithm 3: Adadelta
Input: Training data S, learning rate η, weights w, decay rate ρ, fuzz
factor �

Output: Updated weights w
1 ρ ρ0;
2 � �0 � 10−8;
3 w w0;
4 E½Ĝ2�t¼0

 0;

5 E[Δw2]t=0 0;
6 for t 2 {1, . . ., T} do
7 Randomly shuffle the training data S;
8 Sample a minibatch of size m:{(x(1), y(1)), . . ., (x(m), y(m))} 2 S;
9 for i 2 {1, . . ., m} do
10 Ĝt

@

@wi
costðwt; ðxðiÞ; yðiÞÞÞ; Gradient calculation

11 end
12 E½Ĝ2�t rE½Ĝ2�t� 1

þ ð1 � rÞĜ2
t ;

13 Dwt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½Dw2 �t� 1þ�
p

ffiffiffiffiffiffiffiffiffiffiffiffi
E½Ĝ2 �tþ�
p Ĝt;

14 E[Δw2]t ρE[Δw2]t−1 + (1 + ρ)Δw2t;
15 wt+1 wt + Δwt;
16 end

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 8 / 23

https://doi.org/10.1371/journal.pone.0203829

Adaptive moment estimation (Adam)

This algorithm is presented as a generalization of the Adagrad algorithm by calculating and

updating some statistics such as the first and the second moments of historical gradients at

each iteration. In this regard, it does require a little memory to process [6]. With the help of

these two features, Adam is employed for the big data problems in terms of both dimension

and volume. Like the Adagrad algorithm, Adam is a smart choice for training data with sparse

and noisy gradients [24]. In addition to this, Adam also works for non-stationary objective

functions since it converges due to the change of objective function during the iterations auto-

matically [27]. In fact, Adam carries the benefits of both Adagrad and RMSprop algorithms by

assigning the decay rates β1 and β2 to the exponential moving average of the gradient and its

square.

Algorithm 4: Adam
Input: Training data S, learning rate η, weights w, fuzz factor �,
learning rates decay over each update r1 and r2, exponential decay
rates β1 and β2
Output: Updated weights w
1 � �0 � 10−8;
2 w w0;
3 r1 0;
4 r2 0;
5 t 0;
6 while stopping criterion is not met do
7 Randomly shuffle the training data S;
8 Sample a minibatch of size m:{(x(1), y(1)), . . ., (x(m), y(m))} 2 S;
9 for i 2 {1, . . ., m} do
10 Ĝ @

@wi
costðw; ðxðiÞ; yðiÞÞÞ; Gradient calculation

11 t t + 1;
12 end
13 r1 b1r1 þ ð1 � b1ÞĜ;

14 r2 b2r2 þ ð1 � b2ÞĜ � Ĝ;

15 r̂1
r1

1� bt
1

;

16 r̂2
r2

1� bt
2

;

17 w w � Z
r̂1

�þ
ffiffiffi
r̂2
p ;

18 end

Adaptive moment estimation based on the infinity norm (Adamax)

As it is shown in Algorithm 4, the weights are updated based on the L2 norm of their previous

and current gradients. This approach can be generalized by considering the L1 norm instead

of the L2 norm. In other words, Adamax is a variant of Adam based on the infinity norm. The

details of the Adamax algorithm have been explained in Algorithm 1.

Algorithm 5: Adamax
Input: Training data S, learning rate η, weights w, fuzz factor �,
learning rate decay over each update r, exponentially weighted infinity
norm u, exponential decay rates β1 and β2
Output: Updated weights w
1 � �0 � 10−8;
2 w w0;
3 r 0;
4 u 0;
5 t 0;
6 while stopping criterion is not met do

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 9 / 23

https://doi.org/10.1371/journal.pone.0203829

7 Randomly shuffle the training data S;
8 Sample a minibatch of size m:{(x(1), y(1)), . . ., (x(m), y(m))} 2 S;
9 for i 2 {1, . . ., m} do
10 Ĝt

@

@wi
costðwt; ðxðiÞ; yðiÞÞÞ; Gradient calculation

11 t t + 1;
12 end
13 rt b1rt� 1 þ ð1 � b1ÞĜt;

14 ut maxðb2ut� 1; jĜtjÞ;

15 wt wt� 1 �
Zrt

ð1� bt
1
Þut

;

16 end

Nesterov adaptive moment estimation (Nadam)

Incorporating Nesterov [28] momentum [29] into Algorithm 4 leads us to a new algorithm,

the Nadam algorithm. By using the method of momentum, the learning process is accelerated

by summing up the exponential decay of the moving average of the past and current gradients

[6]. This method is employed for noisy gradients or gradients with high curvature in particu-

lar. Intuitively, the method of momentum combines the opposite signs of gradients in direc-

tions of high curvature with higher speed to damp the fluctuations [30]. In the Nesterov

method, as a version of the momentum method, we change the step that we evaluate the gradi-

ent. In fact, we add a correction factor to the standard method of momentum. All the details

are available in Algorithm 6. Lastly, the Nesterov momentum can be applied to the Adamax

algorithm to have another variant of Adam, referred to as the Nadamax algorithm [31] [32].

Algorithm 6: Nadam
Input: Training data S, learning rate η, weights w, fuzz factor �,
learning rates decay over each update r1 and r2, momentum decay rate γ,
exponential decay rates β1 and β2
Output: Updated weights w
1 � �0 � 10−8;
2 w w0;
3 t 0;
4 r1 0
5 r2 0
6 while stopping criterion is not met do
7 Randomly shuffle the training data S;
8 Sample a minibatch of size m:{(x(1), y(1)), . . ., (x(m), y(m))} 2 S;
9 for i 2 {1, . . ., m} do
10 Ĝt

@

@wi
costðwt; ðxðiÞ; yðiÞÞÞ; Gradient calculation

11 t t + 1;
12 end
13 r1 t b1r1t� 1

þ ð1 � b1ÞĜt;;
14 r̂1 t

r1 t
1� bt

1

;

15 wtþ1 wt �
Z

�þ
ffiffiffiffir2 t
p b1r1 t þ

1� b1

1� bt
1

Ĝt

� �
;

16 end

Root mean square propagation (RMSprop)

The RMSprop algorithm [30] is a modified version of the Adagrad algorithm that divides the

learning rate by an exponentially decaying average of squared gradients. This step is still simi-

lar to Algorithm 3 as depicted in Algorithm 7. RMSprop would outperform Adagrad in the

non-convex problems due to the learning rate shrinkage of the Adagrad algorithm as it is

explained in Algorithm 2. There is a fancy but expensive implementation of the RMSprop

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 10 / 23

https://doi.org/10.1371/journal.pone.0203829

algorithm which calculates the diagonal Hessian which costs double the time of the basic algo-

rithm SGD [18]. This algorithm has shown notable performance in training of deep neural

networks and especially in recurrent neural networks [30].

Algorithm 7: RMSprop
Input: Training data S, learning rate η, weights w, decay rate ρ, fuzz
factor �, learning rate decay over each update r
Output: Updated weights w
1 ρ ρ0;
2 � �0 � 10−8;
3 w w0;
4 r 0
5 while stopping criterion is not met do
6 Randomly shuffle the training data S;
7 Sample a minibatch of size m:{(x(1), y(1)), . . ., (x(m), y(m))} 2 S;
8 for i 2 {1, . . ., m} do
9 Ĝ @

@wi
costðw; ðxðiÞ; yðiÞÞÞ; Gradient calculation

10 end
11 r rr þ ð1 � rÞĜ � Ĝ;

12 w w � Zffiffiffiffiffi
�þr
p � Ĝ

13 end
As shown in Fig 1, once the topology of the network is designed, it is the time to optimize

the hyper-parameters of the optimization algorithms such as learning rates. Table 3 presents

the parameters setting for the grid-search stage 2. In fact, the optimized number of layers and

neurons to construct the deep model architecture were employed to optimize the learning

rates for each of the optimization algorithms. Table 4 presents the tuned hyper-parameters

Table 3. Parameters setting for the grid-search stage 2.

Hyper-parameter Settings

Number of layers 8

Number of neurons in each layer 8, 30, 25, 20, 12, 8, 4, 1

Batch sizes 50

Number of epochs 1000

Activation functions ReLU, Softmax, Sigmoid

Optimizers SGD, Adagrad, Adadelta, RMSprop, Adam, Adamax, Nadam

Learning rates list 1.0, 0.1, 0.005, 0.002, 0.001

Losses MSE

Score metrics R

Number of HPC nodes 10

Number of folds in cross-validation 10

https://doi.org/10.1371/journal.pone.0203829.t003

Table 4. Optimized hyper-parameters for the optimization algorithms after the grid-search stage 2.

Optimizers η � ρ r β1 β2

SGD 0.01 None None 0.0 None None

Adagrad 0.01 1e-08 None 0.0 None None

Adadelta 1.0 1e-08 0.95 0.0 None None

RMSprop 0.001 1e-08 0.9 0.0 None None

Adam 0.001 1e-08 None 0.0 0.9 0.999

Adamax 0.002 1e-08 None 0.0 0.9 0.999

Nadam 0.002 1e-08 None 0.004 0.9 0.999

https://doi.org/10.1371/journal.pone.0203829.t004

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 11 / 23

https://doi.org/10.1371/journal.pone.0203829.t003
https://doi.org/10.1371/journal.pone.0203829.t004
https://doi.org/10.1371/journal.pone.0203829

that considered for the optimization algorithms. As seen, at this stage the grid-search was done

for the list of learning rates and optimization algorithms.

Case study

In this paper, a powerful multi-stage deep model using iDeepLe pipeline is proposed for pur-

poses of seismic hazards assessment based on the database (https://ngawest2.berkeley.edu) of

the NGA project presented by [11]. The database contains eight feature variables and one

response variable including 25,748 exemplars. The proposed model explicitly includes the

effects of moment magnitude (M), closest distance to the coseismic rupture plane in kilometers

(Rrup), reverse and reverse-oblique faulting indicator based on the measurements of the aver-

age angle of the slip in the plane of rupture between the strike direction and the slip vector

(FRV), normal and normal-oblique faulting indicator (FNM), depth to the top of the coseismic

rupture plane in kilometers (ZTOR), large rupture dips (δ), the time-averaged shear-wave veloc-

ity in the top 30 meters of the site profile in meters per seconds (VS30), and periods in seconds

(T) [11]. The illustration of the density plots of the predictor input variables are depicted in

Fig 3. In addition to this, Fig 4 shows the scatter matrix presentation of the predictor input var-

iables with their probability histograms.

By employing the aforementioned predictor variables, a model is desired to measure an

approximation of the maximum acceleration that a building is experiencing during an earth-

quake. This is spectral acceleration (SA). SA is the maximum acceleration of a damped, single-

degree-of-freedom harmonic oscillator, measured in unit of gravity (g) specified by two main

terms: 1) spectral period, 2) spectral damping. The spectral period is the natural period of the

harmonic oscillator in seconds and spectral damping is the degree of damping that we con-

sider for the harmonic oscillator which is usually around 5%. SA is usually calculated based on

a simple harmonic oscillator simulation made by a particle on a massless vertical rod having

the same natural period of vibration as the building [33]. In this paper, the normalized Ln(SA)

is employed as the output of the deep model for the regression task.

Results & discussion

To test out the performance of the tuned deep model architecture along with tuned hyper-

parameters for the optimization algorithms, the grid-search stage 3 with 10-folds cross-valida-

tion for four different batch sizes over seven different number of epochs was applied. In this

stage two loss metrics including mean-squared-error (MSE) and mean-absolute-error (MAE)

and two score metrics including coefficient of determination (R2), and explained variance

(EV) are considered. The parameters setting for the grid-search stage 3 is presented in Table 5.

In addition to this, the tuned hyper-parameters involved in optimization algorithms are also

presented in Table 4.

As the first task, 10-folds cross-validation of the coefficient of determination (R2) with its

standard deviation through a different number of epochs for different batch sizes (50, 100,

150, and 200) are presented in Fig 5, respectively. These figures show the performance of the

deep model in terms of the proportion of the prediction variance which vary for different con-

figurations (i.e. optimizers, epochs, and batch sizes). As seen here, as we increased the number

of epochs, we can see the convergence of the algorithms. Although the model converged after

300 iterations, it is necessary to test out the performance of the model for a large number of

epochs to prove the stability of the deep model. It is interesting that RMSprop scores decayed

after 800 epochs in Fig 5(a) and 5(b). This may be due to the lack of bias-correction, which

reducing the RMSprop’s performance towards the end of optimization as gradients become

sparser. In addition to this, the better performance of Nadam might be due to applying moving

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 12 / 23

https://ngawest2.berkeley.edu
https://doi.org/10.1371/journal.pone.0203829

average before rescaling gradient. However, this procedure in RMSprop is exactly in different

order which is another reason to explain RMSprop performance. It is also obvious that for a

low number of batch sizes such as 50 and 100, the variation of the scores are higher before the

algorithms get to the convergence points. This suggests that for the low number of epochs, it

would be better to employ larger batch sizes. It is also clear that Nadam outperformed the

other algorithms with higher scores and lower fluctuations. This could be due to the presence

of Nesterov momentum [28] as discussed in Algorithm 6.

As the second task, in order to see the performance of the optimization algorithms for the

selected database, two loss metrics, MAE and MSE through different batch sizes were tested

out. In addition, two score metrics, R, and explained variance (EV) were also presented for dif-

ferent batch sizes [34]. The explained variance measures the proportion to which the proposed

model accounts for the variance of the selected database in terms of prediction of spectral

acceleration.

As seen in Fig 6(a) and 6(b), as we increased the batch sizes, the losses increased as was

expected. It should also be noted that there are some exceptions for RMSprop and SGD

Fig 3. Density plots of the predictor input variables.

https://doi.org/10.1371/journal.pone.0203829.g003

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 13 / 23

https://doi.org/10.1371/journal.pone.0203829.g003
https://doi.org/10.1371/journal.pone.0203829

algorithms that the loss metrics decrease for batch size 150. Fig 6 can be a perfect illustration to

rank the performance of the optimization algorithms. Obviously, variants of Adam algorithm,

specifically Nadam, outperformed the other algorithms. The worst performance has been seen

for the Adagrad algorithm. It also should be considered that the deviation of R score as a met-

ric for the regression task is just around 2% between the best (0.96264) and the worst (0.94246)

Fig 4. Scatter matrix presentation of the predictor input variables with their probability histograms.

https://doi.org/10.1371/journal.pone.0203829.g004

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 14 / 23

https://doi.org/10.1371/journal.pone.0203829.g004
https://doi.org/10.1371/journal.pone.0203829

algorithms. The closest explained variance to 1.0 is presented using the Nadam algorithm

which showed the best performance among the optimizations algorithms for this selected

database.

One of the most well-known models for modeling of particles motions during earthquake

is proposed by [11] as a part of NGA project. This model is called “CB 2008” and it is used to

benchmark the proposed deep models in this study. Fig 7 presents the histograms of the ratio

of the predicted and the measured Ln(SA) for different batch sizes and the CB 2008 model. In

order to study the quality assurance, mean and coefficient of variation (CV) [34] of this ratio

are also reported for different batch sizes. As shown, the mean values of all the histograms are

approximately equal to one. The histogram with batch size 100 presents the best mean value of

1.0096. More interesting is the coefficient of variation of the presented histograms and the dif-

ference between iDeepLe results and the CB 2008 model. The coefficient of variation of the

CB 2008 model is about two times more than the coefficients of variation of the proposed

models. Employing coefficient of variation of a model helps to have better understanding of

standard deviation of data in the context of the mean value of the data. As it is shown in Fig 7

(e), the ratio of the predicted and measured spectral acceleration has a normal distribution

with a mean value of 1.0246. However, its calculated coefficient of variation indicated that data

had a large variation. This phenomenon can also be understood from the maximum frequency

value presented in Fig 7(e) which is around 8000. On the other hand, the maximum values in

the other histograms are about 10000. This indicated another point of out-performance of the

proposed iDeepLemodel with respect to the CB 2008 model.

[35] suggested new criteria for external verification of a proposed model: the slope(K or K0)
of the regression line between the actual data (hi) and the predicted data (ti) should be close to

1, and the performance indices |m| and |n| should be lower than 0.1. Recently, [36] introduced

an index (Rm) for external predictability evaluation of models. Their validation criterion is sat-

isfied for Rm� 0.5. The external validation of the statistical parameters of the deep models for

different batch sizes and CB 2008 model are presented in Table 6. The proposed deep models

with the different batch sizes satisfy all the validation conditions. However, CB 2008 model

does not satisfy the last two conditions.

As shown in this paper, all the variants of the Adam algorithm, specifically Nadam algo-

rithm, had the best performances in terms of both accuracy and computational cost. Therefore,

it would be an intelligent decision to employ one of its variants as the optimization algorithm

to tune the hyper-parameters involved in deep learning tasks. This would be an appropriate

Table 5. Parameters setting for the grid-search stage 3.

Hyper-parameter Settings

Number of layers 8

Number of neurons in each layer 8, 30, 25, 20, 12, 8, 4, 1

Batch sizes 50, 100, 150, 200

Number of epochs 50, 100, 200, 300, 500, 800, 1000

Activation functions ReLU, Softmax, Sigmoid

Optimizers SGD, Adagrad, Adadelta, RMSprop, Adam, Adamax, Nadam

Learning rates 0.01, 0.01, 1.0, 0.001, 0.001, 0.002, 0.002

Losses MAE, MSE

Score metrics R, EV

Number of HPC nodes 10

Number of folds in cross-validation 10

https://doi.org/10.1371/journal.pone.0203829.t005

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 15 / 23

https://doi.org/10.1371/journal.pone.0203829.t005
https://doi.org/10.1371/journal.pone.0203829

choice of optimization method rather than basic SGD algorithms. This decision can be sup-

ported by the vast use of the Adam algorithm in Google DeepMind (https://deepmind.com/).

As explained, the main goal of this study was to point out the possibility of building an opti-

mized neural network from scratch for a database with any size. An alternative way of develop-

ing a model from scratch is employing a pre-trained neural network. However, this stage

requires vast knowledge of neural network modeling to modify the model to match the dimen-

sion of the data and show reasonable performance. Table 7 is presented in order to show how

Fig 5. 10-folds cross-validation R2 during number of epochs for different batch sizes employing different optimization algorithms.

https://doi.org/10.1371/journal.pone.0203829.g005

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 16 / 23

https://deepmind.com/
https://doi.org/10.1371/journal.pone.0203829.g005
https://doi.org/10.1371/journal.pone.0203829

close the presented tuned hyper-parameters using Adam algorithm are to the default values of

Adam in the most popular deep learning libraries.

Comparative study

As the final assessment of this study, the performance of the most common regression models

including: (1) least absolute shrinkage and selection operator (Lasso), (2) random forest (RF),

(3) adaptive boosting (AdaBoost), (4) support vector regression (SVR), and (5) multilayer

Fig 6. Statistical metrics for different batch sizes employing different optimization algorithms.

https://doi.org/10.1371/journal.pone.0203829.g006

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 17 / 23

https://doi.org/10.1371/journal.pone.0203829.g006
https://doi.org/10.1371/journal.pone.0203829

Fig 7. Histograms of the ratio of the predicted and the measured Ln(SA) for different batch sizes. Mean and coefficient of

variation of this ratio are also reported for different batch sizes. CB 2008 model has also been demonstrated for comparison.

https://doi.org/10.1371/journal.pone.0203829.g007

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 18 / 23

https://doi.org/10.1371/journal.pone.0203829.g007
https://doi.org/10.1371/journal.pone.0203829

perceptron neural network (NN) were compared to iDeepLemodel employing 10-folds

cross-validation. Fig 8 illustrates the radar plot of the performance of the regression models

in terms of R2 and r2, (shown in Fig 8(a)), and MAE and MSE (shown in Fig 8(b)). By compar-

ing the coefficient of determination, it is clear that iDeepLewith R2 of 0.92 has the best per-

formance and the closest R2 to the proposed model is RF with R2 of 0.77. However, all the

models have high r2 values and iDeepLe still has the highest one. In addition to this, RF after

iDeepLe has the lowest MAE with 0.57 and MSE with 0.59 but they are still far more than the

iDeepLe’s. It should be noted that Lasso showed the worst performance among the employed

regression models for the selected database.

Conclusions

This paper proposes a powerful multi-stage deep learning pipeline to formulate the spectral

acceleration based on the ground-motion predictor variables for the purposes of seismic haz-

ards assessment. In the first stage, it is desired to optimize the topology of the network to find

the number of layers, the number of neurons in each layer, and the type of activation function

for each layer. In the second stage, the optimization of the learning rates for each of the optimi-

zation algorithms is desired. In the third stage, the performance of the model with the opti-

mized topology and learning rates is tested with different number of epochs and batch sizes for

different optimization algorithms. In order to optimize the hyper-parameters, seven optimiza-

tion algorithms including modern algorithms with adaptive learning rates were employed. The

Table 6. External validation results of the deep models with different batch sizes and CB 2008 model.

Condition Batch 50 Batch 100 Batch 150 Batch 200 CB 2008

R R� 0.8 0.96264 0.96150 0.96120 0.96031 0.91938

K ¼
Pn

i¼1
hi ti

h2
i

0.85 < K< 1.15 0.99710 0.98845 0.99373 0.98863 0.96735

K 0 ¼
Pn

i¼1
hi ti

t2i

0.85 < K0 < 1.15 0.99332 1.00164 0.99632 1.00123 1.01279

Rm ¼ R2ð1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jR2 � R2

0
j

p
Þ Rm� 0.5 0.67588 0.67220 0.66959 0.66673 0.52372

R2
o ¼ 1 �

Pn

i¼1
ðti � h0

i Þ
2

Pn

i¼1
ðti � �ti Þ

2

h0
i ¼ K � ti 0.99993 0.99896 0.99967 0.99893 0.98997

R02o ¼ 1 �

Pn

i¼1
ðhi � t0i Þ

2

Pn

i¼1
ðhi � �hi Þ

2

t0
i ¼ K 0 � hi 0.99966 0.99896 0.99967 0.99893 0.98997

jmj ¼ jR2 � R2
0
j

R2
|m|< 0.1 0.07904 0.08056 0.08201 0.08321 0.17120

jnj ¼ jR2 � R
02
0
j

R2

|m|< 0.1 0.07875 0.08166 0.08225 0.08436 0.18158

https://doi.org/10.1371/journal.pone.0203829.t006

Table 7. Parameters setting for the Adam optimizer using the popular deep learning libraries.

Libraries η � β1 β2

Keras 0.001 1e-08 0.9 0.999

TensorFlow 0.001 1e-08 0.9 0.999

Caffe 0.001 1e-08 0.9 0.999

Lasagne 0.001 1e-08 0.9 0.999

Torch 0.001 1e-08 0.9 0.999

MxNet 0.001 1e-08 0.9 0.999

Blocks 0.002 1e-08 0.9 0.999

https://doi.org/10.1371/journal.pone.0203829.t007

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 19 / 23

https://doi.org/10.1371/journal.pone.0203829.t006
https://doi.org/10.1371/journal.pone.0203829.t007
https://doi.org/10.1371/journal.pone.0203829

pseudo codes, pros and cons of each algorithm are discussed briefly. The developed deep

model can automatically select the most significant predictor input variables, formulate the

model structure, and solve the unknown parameters of the regression equation. The perfor-

mance of the proposed model was compared to the most famous model thus far (CB 2008), for

the selected database [11]. Based on the results, the following conclusions are drawn:

1. The multi-stage nature of the proposed model along with adaptive learning rates optimiza-

tion algorithms increases the regression accuracy and decreases the cost and the

complexity.

2. The proposed deep model correlates the predictor input data with spectral acceleration for

96.26% which outperforms CB 2008 model with an accuracy of 91.93% as well as popular

regression models including Lasso, RF, AdaBoost, SVR, and NN.

3. The results show that the Nadam algorithm has the most significant performance in the

proposed model. On the other hand, the Adagrad algorithm has the poorest performance

in comparison to the other algorithms for in the deep model respectively.

4. The proposed iDeepLe along with the Nadam algorithm based on its parallel structure is

shown to be a fast enough tool that it can be employed to generate solid and accurate mod-

els for complex non-linear systems.

5. The statistical parameters presented in Table 6 validate the proposed deep model which

outperforms the previous presented results based on the same database.

6. Adam algorithm and its variants combine the best properties of the Adagrad and RMSProp

algorithms to provide an optimization algorithm that can handle sparse gradients on noisy

problems. Thus, this algorithm would be an appropriate choice for benchmarks in deep

learning studies.

Although, prediction of spectral acceleration experienced by a particle during earthquakes

is a very challenging problem, the use of the proposed multi-stage deep model is not only lim-

ited to this problem and can be employed in various applications. Therefore, the future

research could be developing iDeepLe model for other challenging problems.

Fig 8. Radar plots of the regression metrics for the most common regression models compared to iDeepLemodel.

https://doi.org/10.1371/journal.pone.0203829.g008

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 20 / 23

https://doi.org/10.1371/journal.pone.0203829.g008
https://doi.org/10.1371/journal.pone.0203829

Appendix

Appendix A. Regression metrics

• MAE ¼
Pn

i¼1
jhi � tij

n

• MSE ¼
Pn

i¼1
ðhi � tiÞ

2

n

• R2 ¼

Pn

i¼1
ðhi � �hi Þðti � �ti ÞffiPn

i¼1
ðhi� �hi Þ

2
Pn

i¼1
ðti� �ti Þ

2
p

" #2

• r2 ¼

Pn

i¼1
h2
i �
Pn

i¼1
ðhi � tiÞ

2

Pn

i¼1
h2
i

where hi and ti are respectively the measured and predicted values for the ith output, �hi and �ti are

the average of the measured and predicted outputs, and n is the total number of instances.

Appendix B. Regression parameters in comparative study

• Lasso: � = 2.22e − 16, Niteraion = 500.

• RF: Ntree = 100.

• AdaBoost: Nstage = 100, η = 0.1.

• SVR: kernel = linear, tol = 0.001, C = 1.0, � = 0.1.

• NN: Nhidden = 100, Factivation = ReLU, OPTalgorithm = adam, η = 0.001, � = 1e − 08.

where � is the machine-precision regularization in the computation of the Cholesky diagonal fac-

tors, Niteration is the maximum number of iterations, Ntree is the number of trees, Nstage is the

number of boosting stages to perform, η is learning rate, tol is the tolerance for stopping crite-

rion, C is the penalty parameter of the error term, Nhidden is number of hidden layers in the net-

work, Factivation is the activation function, and OPTalgorithm is the optimization algorithm to

perform.

Acknowledgments

The authors would like to thank Dr. Lauren Bottorf and Brian Bartoldson for the careful revi-

sion of the final version of the manuscript.

Author Contributions

Conceptualization: Amirhessam Tahmassebi.

Data curation: Amirhessam Tahmassebi, Amir H. Gandomi.

Formal analysis: Amirhessam Tahmassebi.

Funding acquisition: Simon Y. Foo.

Investigation: Amirhessam Tahmassebi.

Methodology: Amirhessam Tahmassebi, Amir H. Gandomi.

Project administration: Amirhessam Tahmassebi.

Resources: Amirhessam Tahmassebi.

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 21 / 23

https://doi.org/10.1371/journal.pone.0203829

Software: Amirhessam Tahmassebi.

Supervision: Amir H. Gandomi.

Validation: Amirhessam Tahmassebi.

Visualization: Amirhessam Tahmassebi.

Writing – original draft: Amirhessam Tahmassebi.

Writing – review & editing: Amirhessam Tahmassebi, Amir H. Gandomi, Simon Fong, Anke

Meyer-Baese, Simon Y. Foo.

References
1. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. The bulletin of

mathematical biophysics. 1943; 5(4):115–133. https://doi.org/10.1007/BF02478259

2. Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural computation.

2006; 18(7):1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527 PMID: 16764513

3. Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks. In:

Advances in neural information processing systems; 2007. p. 153–160.

4. Cortes C, Vapnik V. Support-vector networks. Machine learning. 1995; 20(3):273–297. https://doi.org/

10.1007/BF00994018

5. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553):436–444. https://doi.org/10.

1038/nature14539 PMID: 26017442

6. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016.

7. Mirzahosseini MR, Aghaeifar A, Alavi AH, Gandomi AH, Seyednour R. Permanent deformation analysis

of asphalt mixtures using soft computing techniques. Expert Systems with Applications. 2011; 38(5):

6081–6100. https://doi.org/10.1016/j.eswa.2010.11.002

8. Ruiz L, Rueda R, Cuéllar M, Pegalajar M. Energy consumption forecasting based on Elman neural net-

works with evolutive optimization. Expert Systems with Applications. 2018; 92:380–389. https://doi.org/

10.1016/j.eswa.2017.09.059

9. Svečko R, KusićD. Feedforward neural network position control of a piezoelectric actuator based on a

BAT search algorithm. Expert Systems with Applications. 2015; 42(13):5416–5423. https://doi.org/10.

1016/j.eswa.2015.02.061

10. Li X, Yin M. Application of differential evolution algorithm on self-potential data. PloS one. 2012; 7(12):

e51199. https://doi.org/10.1371/journal.pone.0051199 PMID: 23240004

11. Campbell KW, Bozorgnia Y. NGA ground motion model for the geometric mean horizontal component

of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to

10 s. Earthquake Spectra. 2008; 24(1):139–171. https://doi.org/10.1193/1.2857546

12. Power M, Chiou B, Abrahamson N, Bozorgnia Y, Shantz T, Roblee C. An overview of the NGA project.

Earthquake spectra. 2008; 24(1):3–21. https://doi.org/10.1193/1.2894833

13. Tahmassebi A. iDeepLe: Deep learning in a Flash. In: Disruptive Technologies in Information Sciences.

vol. 10652. International Society for Optics and Photonics; 2018.

14. Chollet F, et al. Keras; 2015.

15. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. Tensorflow: Large-scale machine

learning on heterogeneous distributed systems. arXiv preprint arXiv:160304467. 2016;.

16. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research. 2011; 12:2825–2830.

17. Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, et al. API design for machine learn-

ing software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data

Mining and Machine Learning; 2013. p. 108–122.

18. Schaul T, Zhang S, LeCun Y. No more pesky learning rates. In: International Conference on Machine

Learning; 2013. p. 343–351.

19. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the

27th international conference on machine learning (ICML-10); 2010. p. 807–814.

20. Bishop CM. Pattern recognition and machine learning. springer; 2006.

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 22 / 23

https://doi.org/10.1007/BF02478259
https://doi.org/10.1162/neco.2006.18.7.1527
http://www.ncbi.nlm.nih.gov/pubmed/16764513
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1016/j.eswa.2010.11.002
https://doi.org/10.1016/j.eswa.2017.09.059
https://doi.org/10.1016/j.eswa.2017.09.059
https://doi.org/10.1016/j.eswa.2015.02.061
https://doi.org/10.1016/j.eswa.2015.02.061
https://doi.org/10.1371/journal.pone.0051199
http://www.ncbi.nlm.nih.gov/pubmed/23240004
https://doi.org/10.1193/1.2857546
https://doi.org/10.1193/1.2894833
https://doi.org/10.1371/journal.pone.0203829

21. Han J, Moraga C. The influence of the sigmoid function parameters on the speed of backpropagation

learning. From Natural to Artificial Neural Computation. 1995; p. 195–201.

22. Bousquet O, Bottou L. The tradeoffs of large scale learning. In: Advances in neural information process-

ing systems; 2008. p. 161–168.

23. Bishop CM. Neural networks for pattern recognition. Oxford university press; 1995.

24. Ruder S. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:160904747.

2016;.

25. Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimiza-

tion. Journal of Machine Learning Research. 2011; 12(Jul):2121–2159.

26. Zeiler MD. ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:12125701. 2012;.

27. Kingma D, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980. 2014;.

28. Nesterov Y. Introductory lectures on convex optimization: A basic course. vol. 87. Springer Science &

Business Media; 2013.

29. Polyak BT. Some methods of speeding up the convergence of iteration methods. USSR Computational

Mathematics and Mathematical Physics. 1964; 4(5):1–17. https://doi.org/10.1016/0041-5553(64)

90137-5

30. Tieleman T, Hinton G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent mag-

nitude. COURSERA: Neural networks for machine learning. 2012; 4(2):26–31.

31. Dozat T. Incorporating nesterov momentum into adam. 2016;.

32. Sutskever I, Martens J, Dahl G, Hinton G. On the importance of initialization and momentum in deep

learning. In: International conference on machine learning; 2013. p. 1139–1147.

33. Baker JW, Cornell C Allin. A vector-valued ground motion intensity measure consisting of spectral

acceleration and epsilon. Earthquake Engineering & Structural Dynamics. 2005; 34(10):1193–1217.

https://doi.org/10.1002/eqe.474

34. Everitt B, Skrondal A. The Cambridge dictionary of statistics. vol. 106. Cambridge University Press

Cambridge; 2002.

35. Golbraikh A, Tropsha A. Beware of q 2! Journal of molecular graphics and modelling. 2002; 20(4):

269–276. https://doi.org/10.1016/S1093-3263(01)00123-1 PMID: 11858635

36. Roy PP, Roy K. On some aspects of variable selection for partial least squares regression models.

Molecular Informatics. 2008; 27(3):302–313.

Multi-stage optimization of a deep model

PLOS ONE | https://doi.org/10.1371/journal.pone.0203829 September 19, 2018 23 / 23

https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1002/eqe.474
https://doi.org/10.1016/S1093-3263(01)00123-1
http://www.ncbi.nlm.nih.gov/pubmed/11858635
https://doi.org/10.1371/journal.pone.0203829

