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A B S T R A C T

A multi-objective genetic programming (MOGP) technique with multiple genes is proposed to formulate the
energy performance of residential buildings. Here, it is assumed that loads have linear relation in terms of genes.
On this basis, an equation is developed by MOGP method to predict both heating and cooling loads. The pro-
posed evolutionary approach optimizes the most significant predictor input variables in the model for both
accuracy and complexity, while simultaneously solving the unknown parameters of the model. In the proposed
energy performance model, relative compactness has the most and orientation the least contribution. The
proposed MOGP model is simple and has a high degree of accuracy. The results show that MOGP is a suitable
tool to generate solid models for complex nonlinear systems with capability of solving big data problems via
parallel algorithms.

1. Introduction

Lawrence Livermore National Lab (LLNL), in 2012, has published an
annual report on national energy waste that factors energy wasted in
everything. They have found that Americans spend $130 billion a year
on wasted energy which is the reason of a jump from 70% to 110% in
the household income spent on utilities since 2001. The amount of
energy wasted by 75,000 average American homes in a single year is
equal to the waste that occurred in the 2010 BP Oil Spill MacEachern
et al. [20]. It should be noted that roughly 40% of the global energy is
consumed by the building sectors Zhu et al. [39]. This issue rises big
demand to conserve and control of energy use in buildings.

Baird et al. [2] have employed ample strategies and techniques of
energy management, successful conservation programs, energy pre-
diction methods, factors affecting energy consumption, and the essen-
tial principles of building energy performance standards to propose a
novel framework for classifying the roles and concerns of all groups
involved in building energy.

Over the past five decades, a wide variety of categories to improve
energy efficiency and sustainability of buildings such as heating, ven-
tilation and air conditioning (HVAC) systems, HVAC equipments, phase
change materials (PCM), thermal energy storage (TES), ventilation and
multi-zone airflow, zone loads, renewable energy systems, modeling
features, and optimized shape of structures have been proposed
MacEachern et al. [20], Zhu et al. [39], Baird et al. [2], Tsanas and

Xifara [36], Menezes et al. [21], Crawley et al. [5].
For instance, based on structural types of buildings (lightweight or

heavyweight), thermal mass can be increased by combining the PCMs
and the coating affairs such as gypsum wallboard, concrete, and plaster.
Consequently, the differential pricing system for energy can be im-
proved by employing TES which allows us to store the thermal energy
(heat or cool) temporarily for later use whenever there is a mismatch
between energy supply and demand Zhu et al. [39]. Moreover, mod-
eling features to construct more energy efficient buildings would ensure
the construction industry to overcome the aforementioned challenges.
However, it has been shown that buildings are not performing as well as
expected and there is a performance gap between the predicted energy
performance and the actual measured energy Menezes et al. [21], De
Wilde [8]. This is known as performance gap. The deviation between
predicted energy performance based on machine learning algorithms
and actual measurements has been mentioned as one of the main types
of performance gap De Wilde [8].

Tsanas and Xifara [36] have proposed an accurate quantitative
study using statistical machine learning to estimate energy performance
of buildings. In this study, they associated the strength of each predictor
input variable with statistical metrics using the Spearman rank corre-
lation Zar [38] along with iteratively re-weighted least squares (IRLS)
model.

The idea of adjusting weights in the coefficients of the classical
regression schemes iteratively can be extended to employ evolutionary
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algorithms to produce a model based on non-Gaussian data with less
effect of outliers. Gandomi and Roke [10] have previously designed a
model to predict seismic response in structural systems with help of
evolutionary algorithms. Genetic programming (GP) Koza [18] is used
to predict the statistical parameters of roof drift response under the
design basis earthquake using the most effective mechanical and geo-
metric parameters such as rocking behavior, post-tensioning bars, and
energy dissipation elements.

In addition to this, Alavi and Gandomi [1] presented promising
variants of GP to produce energy-based numerical models for assess-
ment of soil liquefaction. In this regard, linear genetic programming
(LGP) Brameier and Banzhaf [4] and multi expression programming
(MEP) Oltean and Dumitrescu [23] were employed to conduct re-
lationships between energy density and the factors affecting the capa-
city energy. Moreover, Muduli and Das [22] were employed multi-gene
genetic programming to model uncertainty of SPT-based method for
evaluation of seismic soil liquefaction potential. Gandomi et al. [12]
have also proposed a novel genetic-based simulated annealing (GSA)
non-linear model to formulate hysteretic energy based on various
parameters such as earthquake intensity, number of stories, soil type,
period, strength index, and energy imparted to the structure.

Many studies in the research area of energy performance have failed
to meticulously model the data due to the rigid simplifying mathema-
tical assumptions relying on linear correlations and classical least
squares regression techniques Tsanas and Xifara [36]. This suggests to
employ the flexibility of GP models in combination with data reduction
methods to span new subspaces in which predictor variables are not
correlated. Tahmassebi et al. [32–35] have combined GP models with
six different data reduction algorithms including, topographic ICA, fast
ICA, supervised SVD, SVD, kernel PCA, and PCA in fMRI big data
classification problem with roughly 240,000 input predictor variables.
This opens new avenues in various scientific fields including energy
performance and makes the solutions to big data problems more fea-
sible. Additionally, Vijayaraghavan et al. [37] have employed GP as an
optimization approach for quantitative analysis of the data obtained
from finite element analysis (FEA) in fracture mechanics modeling of
lithium-ion batteries under pinch torsion test Rajan et al. [24].

This study aims to propose a multi-objective genetic programming
(MOGP) method with multiple genes to formulate the energy perfor-
mance of residential buildings. The MOGP can automatically select the
most substantial predictor input variables in the model, formulate the
model structure, and solve the unknown parameters of the regression
equation, while simultaneously optimizing for both accuracy and
complexity. Here, it is assumed that loads have linear relation in terms
of genes. On this basis, an equation is developed by MOGP method to
predict both heating and cooling loads. In addition to this, MOGP is
written using parallel processing algorithms to accelerate the process
Gandomi et al. [13]. This would decrease the run-time of the model
which is always substantial in evolutionary algorithms.

2. Genetic Programming (GP)

In 1992, Koza [18] introduced GP as a symbolic optimization
technique based on genetic algorithms (GA). The major ability of GP is
evolving computer programs based on the Darwins evolution theory.
Both GP and GA have been widely used in various optimization pro-
blems to find a global optimum solution for a set of predictor input
variables. GP does not require any predefined structures of the solution
to produce optimum solution to optimize the problem.

In contrast, GA employs a binary encoded version of all predictor
input variables to produce a string of numbers as the output of the
optimization problem Kwasnicka and Przewozniczek [19]. In other
words, GP at first produces a pool of possible solutions also known as
population stochastically based on the terminal nodes. Then, the solu-
tions compete with each other at each generation and based on the
termination criteria the evolutionary computation stops. Thus, the

solution evolves through new generations which are created by genetic
operators such as crossover, and mutation. Crossover selects a node
from the parental individuals stochastically and replaces the subtree
under the selected nodes. In addition to this, mutation generates a node
stochastically and truncates and exchanges another node of a tree with
the generated node Gandomi et al. [13], Soleimani et al. [30], Garg
et al. [15].

To see the performance of the executable program, we need to de-
termine a metric. Likewise machine learning in which we use loss, error,
or score as a metric, in GP fitness score needs to be optimized as a metric
in order to be able to select the best program out of population of in-
dividuals Bishop [3]. The higher fitness score leads to a higher prob-
ability of winning for an individual in each tournament at each gen-
eration. In this regard, the best fitted solution would be found through
GP modifications of the individual solution of a population through
generations Gandomi et al. [13], Tahmassebi and Gandomi [31]. De-
spite GP which is a population-based algorithm, most of the machine
learning algorithms such as artificial neural networks (ANN), and
support vector regression (SVR) are trajectory-based algorithms. Tra-
jectory-based algorithms select a single solution through the learning
process while GP deals with a pool of solutions at each generation.

In words of Darwin [6], owing to this struggle for life, any variation,
however slight and from whatever cause proceeding, if it be in any
degree profitable to an individual of any species, in its infinitely
complex relations to other organic beings and to external nature,
will tend to the preservation of that individual, and will generally be
inherited by its offspring. The offspring, also, will thus have a better
chance of surviving, for, of the many individuals of any species
which are periodically born, but a small number can survive.

3. Problem formulation

Symbolic mathematical regression can be implemented by an evo-
lution of a population of genes using a robust variant of GP, multi-gene
genetic programming (MGGP) Gandomi and Alavi [11], Garg et al.
[14], Muduli and Das [22]. A typical MGGP model is a weighted linear
combination of each gene which contains non-linear terms with respect
to the weight coefficients. The general formulation of an MGGP model
can be expressed as follows:

̂ ∑= +
=

y x d θ d d G θ x( , , ) · ( , )
i

n

i i0
1 (1)

where x is the predictor input matrix, θ is the vector of the unknown
parameters for each gene, n is the number of genes, d0 is a bias term, di
is the gene weight, and G θ x( , )i is the vector of outputs from the ith gene
comprising a multi-gene individual. Fig. 1 presents a typical formula-
tion of MGGP model with three input variables x x x{ , , }1 2 3 . However, each
gene contains nonlinear terms such as cos and ln, the final model is
weighted linear combination of each gene via coefficients d d d{ , , }0 1 2 .
Although MGGP is one of the most popular GP variants, it still has
limitations for producing models that over-fitting on the testing data. In
principle, the underlying relationships of the entire database were not
learned, which might give falsify information about the process. Two
specific reasons for over-fitting in MGGP models are inappropriate
procedure of formation of MGGP model and inappropriate procedure in
model selection Garg and Tai [16]. Additional obstacle we might en-
counter in optimization using MGGP is ending up with an excessively
complex developed model since the traditional tree-based GP employs
only one objective in the model to maximize the fitness score during the
training process. In addition to this, MGGP develops the model in an
evolutionary process where the size and shape of the solutions depend
on the evolution. This rises a new challenge to add the complexity of
the developed model as another objective in optimization problem. The
combination of these two objectives is the basis of the multi-objective
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Fig. 1. A typical formulation of MGGP model with
three predictor inputs.

Fig. 2. Flowchart of MOGP.
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genetic programming (MOGP) algorithm which has roots in multi-ob-
jective optimization (MOO) in which finding the optimal solution with
respect to multiple fitness functions is desired Slowik and Slowik [29],
Słowik and Białko [28]. As it is shown in Fig. 2, each of the 50 runs is
based on non-dominated sorting and, therefore, each individual run is
MOO. Also, this method creates a pool of non-dominated models from
all 50 runs results and does another non-dominated sorting on the pool
models to find the final non-dominated models (Pareto front models).

MOGP is an extension of standard GP algorithms which synchro-
nizes the process of maximizing the fitness function and minimizing the
complexity of the model. This paper presents the performance of the
combination of MGGP and MOGP to improve parsimony and accuracy
of the model to predict the energy performance of buildings based on
the presented database. To conduct the MOGP algorithm, a pipeline
using the GPTIPS 2 toolbox Searson et al. [27], Searson [26] along with
scripts written in Python and MATLAB is proposed. In the proposed
pipeline, a non-dominated sorting algorithm Deb et al. [9] is employed
at the end of each generation of the MOGP model to sort the non-
dominant solutions based on their complexity and accuracy. The
schematic flowchart of parallel processing in the GP process is shown in
Fig. 2. Once the pool of solutions produced by MOGP is ready after 50
runs, the non-dominated sorting algorithm is applied to classify the

individuals and find Pareto fronts. Then, based on the predefined
threshold settings the decision to select the most optimized solution is
made.

A set of Pareto optimal solutions that are not dominated by any
other solutions present the Pareto front level 1. The solutions that bear
Pareto front level 2 are not dominated by any other solutions, apart
from those in Pareto front level 1, and so on. Next, a crowding factor,
such as the average distance of a solution from the nearest solutions on
the same Pareto front is calculated for each individual. It would in-
crease the diversity of the population and also giving lower priority to
the solutions that are crowded together during the ranking process.
Finally, the solutions are ranked according to their position: the solu-
tions on level 1 are ranked above the solutions on level 2, and so on. It
should be noted that the solutions that are on the same Pareto front are
ranked according to their crowding factors. The top 50% of the popu-
lation will survive to the next generation, while the rest are eliminated

Table 1
Parameter settings for MOGP algorithm.

Parameter Settings

Function set + − ×, , ,/, ,log,sin,cos,tanh
Population size 500
Number of generations 1000
Tournament size 10% of population size
Crossover events 0.85
High-level crossover 0.2
Low-level crossover 0.8
Mutation events 0.12
Subtree mutation 0.9
Direct reproduction 0.05

Fig. 3. Density plots of the predictor input variables.

Fig. 4. Box plot presentation of the predictor input variables.
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Gandomi et al. [13], Searson et al. [27], Searson [26]. Table 1 presents
the parameter settings used in the proposed MOGP model.

Next, a database of 768 building samples generated by 12 building
forms with volume of 771.75 m3 using Autodesk Ecotect Analysis have
been considered Tsanas and Xifara [36]. Each of the building samples
can be characterized by eight predictor input parameters: relative
compactness (RC), surface area (SA), wall area (WA), roof area (RA),

overall height (OH), orientation (OR), glazing area (GA), and glazing
area distribution (GAD). Moreover, two output as heating load (HL) and
cooling load (CL) have been recorded for each of the building samples
during the simulation process. Fig. 3 illustrates the kernel density es-
timation (KDE) of each of the eight predictor input variables. KDE is a
non-parametric way to estimate the probability density function to
smooth finite data sample based on the inferences about the population.

Fig. 5. Scatter matrix presentation of the predictor
input variables with their probability histograms.

Fig. 6. Histograms of the frequency of each predictor
variables used in the best MOGP models as inputs.
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Furthermore, Fig. 4 is depicted to display the variations of the predictor
input variables and their outliers without making any assumptions of
the underlying statistical distribution. To present the box plot, all the
predictor input variables have been normalized to have mean of zero
and standard deviation of one.

4. Results and discussion

An MOGP model with 1000 number of generations and population
size of 500 for symbolic regression of eight predictor input variables,
namely RC, SA, WA, RA, OH, OR, GA, and GAD for one output HL have
been developed using GPTIPS 2 toolbox combined with scripts in
Python and MATLAB. Fig. 2 depicts the flowchart of the MOGP model.
Then, by changing the coefficients of MGGP model, d{ }i , based on Eq.
(1), the regression task has been repeated for the second output, CL. By
employing this way, we have proposed an explicit regression model
with saving much more runtime without loosing the accuracy. The

regression model is as follows:

= + ⎡
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As you can see, the derived Eq. (2) by the MOGP with multiple
genes has the same structure for both heating and cooling loads by
presenting different weights due to the correlation between heating
load and cooling load as the outputs of the regression models. Pre-
viously Tsanas and Xifara [36] have explored the statistical relationship
among the input values in the database presented in this paper. The
presented formulas compared with their formulas which were weighted
linear combinations of inputs, have non-linear structure and more
complex terms. That would be the reason that they ended up with the
mean absolute error of 50% in prediction. In contrast, the proposed
MGGP model is a weighted linear combination of each gene which
contains non-linear terms.

Fig. 5 shows the scatter matrix to demonstrate the correlation be-
tween the eight predictor input variables along with their histograms. It
illustrates the multivariate statistics combined with the frequency of the
eight input variables. This suggests that classical linear regression
models might fail to find an optimized model which comprises all the
predictor input variables. Fig. 5 intuitively confirms the importance of
using non-linear algorithms to find an accurate and optimized mapping
among the input variables and outputs. For instance, it is obvious that
RC is inversely proportional to SA. This might be due to the assump-
tions have been made to generate the database Tsanas and Xifara [36].

As mentioned in Section 3, the final MOGP model formulation
portrays the best prediction accuracy along with less complexity. The
prediction accuracy has been measured by the coefficient of determi-
nation R and the model complexity has been measured by the number
of predictor input variables. Fig. 6 demonstrates the frequency of each
of the predictor input variables which are used in the best MOGP
models. It also pictures that the orientation of the building models has
the least contributions in the best MOGP models.

It should be noted that in the MOGP pipeline, we set that the models
with ⩾R 0.8 are the best generated models. We executed the code for
50 runs with a population of 500 individuals. In other words, we would
come up with 25,000 programs as the pool of solutions as we have
shown in Fig. 2 previously. Fig. 7 demonstrates all the models devel-
oped using MOGP, Pareto front results obtained by non-dominated
sorting algorithm, and the selected MOGP model. Among 25,000 gen-
erated MOGP models, 22,159 models had ⩾R 0.8 conditions.

Fig. 7. All models developed using MOGP (solid blue
circles), Pareto front results obtained by non-domi-
nated sorting algorithm (solid green circle), and the
selected MOGP model (solid red circle). (For inter-
pretation of the references to color in this figure le-
gend, the reader is referred to the web version of this
article.)

Table 2
Regression coefficients for the heating and cooling loads formulas.

Load Coefficients

c0 c1 c2 c3

YHL −22.33 2.70 3.61 −338018.13
YCL −3.18 1.97 3.27 −444769.39

Table 3
Statistical parameters of the MOGP models for the external validation.

Condition YHL YCL

R ⩾R 0.8 0.9939 0.9745

=
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n hiti
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Golbraikh and Tropsha [17] suggested new criteria for external
verification of a proposed model: the slope (K or ′K ) of the regression
line between the actual data (hi) and the predicted data (ti) should be
close to 1, and the performance indices m| | and n| | should be lower than
0.1. Recently, Roy and Roy [25] introduced an index (Rm) for external
predictability evaluation of models. Their validation criterion is sa-
tisfied for ⩾R 0.5m . The external validation criteria results for the de-
veloped models are shown in Table 3. The derived MOGP models satisfy
all the proposed conditions.

Based on the presented model by Tsanas and Xifara [36], RC, WA,
and RA are the most correlated input variables with respect to the
outputs, HL and CL. On the contrary, in the proposed MOGP model RA
has not so much contributions in the derived model. To address the
difference it should be noted that Tsanas and Xifara [36] have em-
ployed IRLS model to overcome the nonlinearity of the database. The
IRLS in comparison to GP has less power to find an optimized solution
that fits all the inputs with high accuracy and low complexity. In ad-
dition to this, the high impacts of outliers as shown in Fig. 4 would be
the reason of IRLS’s failure to predict the heating and cooling loads with
high accuracy Das and Basudhar [7]. It can be also shown by referring
to Fig. 3 as the kernel density estimations of the input variables, this
conclusion can be drawn that the available linear techniques could not
find an appropriate fit for this database in this application.

5. Summary and conclusion

This paper proposes a novel and explicit formulation of building
energy consumption forecast via a multi-objective genetic program-
ming (MOGP) technique. The developed MOGP can automatically se-
lect the most significant predictor input variables in the model, for-
mulate the model structure, and explicitly solve the unknown
parameters of the regression equation through evolution. In addition to
this, the derived MOGP optimizes the model for both accuracy and
complexity while solving the regression equation. Since the model is
coded using parallel algorithms, it can be applied to big data problems
as well. To see the performance of the proposed MOGP model, a da-
tabase of 768 building samples generated by 12 building forms with
volume of 771.75 m3 have been considered. Each of the building samples
can be characterized by eight predictor input parameters. After con-
ducting MOGP, the optimum model is selected from Pareto front results
with respect to a trade-off between the accuracy and the model com-
plexity. Based on the results, the following conclusions are drawn:

1. The proposed MOGP model shows an explicit non-linear formula-
tion of building energy consumption forecast which correlates the
predictor input data with heating load for 99% and cooling load for
97%.

2. By changing the weights presented in Table 2 for the derived MOGP
model, the heating and cooling loads (Eq. (2)) would be found.

3. The results show that the relative compactness has the most sig-
nificant contributions in the best generated MOGP models. On the
other hand, the orientation has the least contribution in the derived
models respectively.

4. The MOGP algorithm is shown to be a fast enough tool to handle big
data problems, and it can be employed to generate solid and accu-
rate models for complex nonlinear systems.

5. The statistical parameters presented in Table 3 prove the validation
of the proposed MOGP model which outperforms the previous pre-
sented results based on the same database.
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