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Abstract—Effective monitoring and early detection of dete-
rioration in patients play an essential role in healthcare. This
includes minimizing the number of emergency encounters, reduc-
ing the length of hospitalization stay, re-admission rates of the
patients, and etc. Cutting-edge methods in artificial intelligence
(AI) have the ability to significantly improve outcomes. However,
the struggle to interpret these black box models presents a serious
problem to the healthcare industry. When selecting a model,
the decision to sacrifice accuracy for interpretability must be
made. In this paper, we propose an interpretable framework with
the ability of real-time prediction. To demonstrate the predictive
power of the framework, a case study on eye state detection using
electroencephalogram (EEG) signals was employed to investigate
how a deep neural network (DNN) model makes a prediction, and
how that prediction can be interpreted. The promising results can
be used to employ more advanced models in healthcare solutions
without any concern of sacrificing the interpretation.

I. INTRODUCTION

United States healthcare spending grew 4.6 percent in 2018,
reaching $3.6 trillion or $11, 172 per person. As a share of
the nation’s Gross Domestic Product (GDP), health spending
accounted for 17.7 percent. This would promise implementa-
tion of more impactful solutions in healthcare via cutting-edge
approaches. Real-time health monitoring and early detection of
deterioration in patients are excellent subjects to be explored
for possible novel approaches. For example, research on car-
diac diseases shows that high level of Troponin (above 0.40
ng/ml) in blood could lead to an acute myocardial infarction
event [1]. This feature is a result of a blood test from lab which
can be used for an early prediction of one the most important
adverse events according to US Centers for Medicare Med-
icaid Services (CMS). Similarly, there are several indicators
and physiological signs that can be employed for early warning
of serious illnesses and deterioration including airway, breath-
ing, circulation, etc. In addition to this, Internet of Things
(IoT) and wearable technologies provide a competent and
structured approach to improve the healthcare services in terms
of social benefits and penetration as well as cost-efficiency [2].
To this end, implementation of real-time health monitoring

systems are developed based on the conclusion of several
studies suggesting that better interventions and responses can
be employed using early detection of deterioration in patients
[3]. As shown in Fig. 1, Cerner Corporation was the market
leader with 10.5% market share in license, maintenance and
subscription revenues, followed by Microsoft, athenahealth,
Allscripts and Oracle. These companies build various pre-
dictive models based on their structured and non-structured
electronic medical records (EMR). The EMR data include
demographics information, historical encounters, medications,
clinical conditions, and lab test results, etc. Most of the clinical
data requires standardization and transformation via ontology
solutions. In this paper, we investigate a case study on eye
state detection using EEG signals which are more sophisticated
EMR data.

Fig. 1. Healthcare applications market shares split by top 10 healthcare
vendors and others in 2018.

In 1875, Richard Caton [4] observed electric activity in
the exposed brains of rabbits and monkeys. This sparked
use of EEG data in various fields of research. The greatest
advantage of EEG data is its high temporal resolution, which
can be used to determine the relative strengths and positions of978-1-7281-2547-3/20/$31.00 c©2020 IEEE



electrical activity in different brain regions. Recent years have
seen increased interest in using human brain activities as the
input of various applications such as sport performance [5],
smart health applications [6], neuroergonomics applications
[7], and epileptic seizure detection [8]. In addition, designing
an implementation setup to employ EEG signals to predict
a task has been a point of attention in publications. Various
methods including autoregressive and bispectral analysis, com-
mon independent component analysis (ICA) (e.g. InfoMax,
FastICA, SOBI, JADE) [9], and Fourier-based transformations
can be used as an approach for preparing the raw EEG signals
and extracting salient features [10]. Preprocessing the EEG
signals is necessary due to the existence of noise created
by muscle artifact, skin artifact, electrode movement, eye
movement, respiration artifact, etc [5].

EEG signals are non-stationary, causing the conventional
method of frequency analysis to be less successful in diagnos-
tic classification. Therefore, more complex models and feature
engineering techniques are needed to improve the precision
and accuracy of the classification [11]. These complex models
are commonly known as black box models because they are
difficult to interpret. Cutting edge methods involving black
box models have the ability to significantly improve outcomes,
however the trade-off between accuracy and interpretability is
a significant challenge in the field of machine learning. Hastie
et al. [12] has shown multiples ways, including Friedman’s
partial dependence plot [13] and Pearl’s back-door adjustment
[14], to determine causal interpretation of black box models.
A black box model receives the input variables and produces
the response variables. We can name two important elements
of a black box: (1) the information that can be algorithmically
extracted, and (2) the noise [12]. Some common types of
models, such as generalized linear models, subscribe to a data
modeling culture which assumes the input variables are in a
parametric form. Black box models are non-parametric and
work to maximize predictive accuracy by approximating the
input variables using a high-dimensional and highly nonlinear
function with many interactions. These black box models often
perform significantly better than the parametric models (in
terms of prediction) and have achieved tremendous success
in applications across many fields [15].

In this paper, we use a case study on eye state detection
using EEG data to investigate how the proposed framework
makes predictions using a DNN model. The main objective
here to demonstrate how the proposed framework is able
to explain the outcomes while using a black-box model.
Therefore, the results were compared to a gradient boosted
tree model to evaluate the accuracy and interpretabilty of
each of the models. This paper is structured as follows: The
introduction and background is presented in section I. Section
II includes the details of the modeling and interpretation
framework followed by section III with the details of the case
study including the experimental data and developed models.
Results and discussion are presented in section IV and the
summary and conclusions of the study are recapitulated in
section V.

Fig. 2. Modeling and interpretation framework flowchart.

II. MODELING & INTERPRETATION FRAMEWORK

Modeling and interpretation framework includes four main
components: (1) extract, transform, load (ETL) process, (2)
training , (3) deployment, (4) prediction. Fig. 2 illustrates the
flowchart of the framework. As shown, the overall pipeline
flow begins with loading the real-time data and ETL process,
applying the deployed trained model, and calculate the predic-
tion, while each step includes various details and specific chal-
lenges. For instance, the ETL process itself includes extracting
the data from in-house database or cloud storage, applying the
required transformation to have the data in tidy format, and
loading it back to the server for the next steps of the pipeline.
The box with the dashed line in Fig. 2 illustrates the training
process that can applied to any model to be deployed via the
proposed framework. As the training step goes after feature ex-
traction/engineering (let’s say for a classification problem), the
data is splitted into train/test sets in a stratified fashion. This
would a be crucial task to improve the generalization results
due to any imbalanced problem. In the training step, the feature
standardization/scaling can be fitted to the train data and scaler
object should be applied to the test set to transform the test
data into the scaled train data subspace (no fitting for test data).
Next, the hyper-parameters of the model should be tuned.
Fail to tune the hyper-parameter values is one of the most
common reasons for training a biased/over-fitted model. There
are various methods including exhaustive grid-search, random
search, and Bayesian optimization [16]. Grid search provides
an exhaustive search over specified parameter values. All the
possible combinations of the specified hyper-parameters will
be checked. In contrast to grid search, in random search
not all parameter values would be tried out, but rather a
fixed number of parameter settings will be sampled from the
specified distributions. This is quite interesting since not all



the alternative values in each array for hyper-parameters play
an important role in the outcomes. Therefore, by random sam-
pling, the most important hyper-parameters can be determined
and the other hyper-parameters settings can be kept fixed. In
this way, the same results would not be replicated anymore
and the learning slope will be positive. Employing machine
learning to predict what combinations are likely to work well
could help to rescue from the huge computational time. It
requires to predict the regions of the hyper-parameter space
that might give better outcomes. It also requires to predict how
well a new combination will do and model the uncertainty
of that prediction using Gaussian Process models. Gaussian
processes provide a principled, practical, and probabilistic
approach in machine learning. Gaussian processes simply have
an essential assumption that similar inputs give similar outputs.
This simple and weak prior are actually very sensible for
the effects of hyper-parameters. Bayesian optimization, is a
constrained global optimization approach built upon Bayesian
inference and Gaussian process models to find the maximum
value of an unknown function in the most efficient ways (less
iterations) [16]. After tuning the hyper-parameters, the model
can be trained and the fitness metrics can be evaluated using
both training and testing data sets. Finally, the visualization
modules of the training stage including the evolution of the
performance metrics on both training and testing data sets,
visualization of the trained model, and the feature importance
can be employed. The testing stage begins with running
the testing visualization modules including receiver operating
characteristic (ROC) curves and confusion matrix. Finally,
Shapley values can be calculated for the testing data and
SHAP visualization modules can be applied on the testing
data. As show, the training process has a feedback loop to the
deployment method. The most common approach for real-time
risk prediction in healthcare is batch-processing. In principle,
the real-time data goes through the deployed model and after
the feature extraction/engineering the risk can be predicted.
However, everyday the model encounters new patients and the
ability to predict the new encounters is vital. Therefore, the
new data after the prediction step can be joined back to the
training data via a scheduled job and re-training process of
the model and deployment of the new version of the model
can be done. The interval of this step totally depends on the
use-case.

III. CASE STUDY

A. EEG Data

The goal of EEG is to non-invasively record the voltage
differences in scalp potentials that result from the electrical
activity of neurons. In principle, these potential differences
are caused by summed post-synaptic potentials from pyramidal
cells that create diploes between soma and apical dendrites.
However, the recorded potentials can also be the result of noise
signals due to different sources of artifacts and movements.
The EEG electrodes on the scalp amplify these microscopic
signals, which are usually sampled at 256 Hz or higher, to
provide a high temporal resolution [5].

TABLE I
LAYER SETTINGS FOR DNN MODEL.

Layer Type Number of Neurons Activation Function # of Params

Input 14 ReLU -

Dense 10 ReLU 150

Dense 9 ReLU 99

Dense 8 ReLU 80

Dense 7 ReLU 63

Dense 4 ReLU 32

Dense 2 ReLU 10

Output 1 Sigmoid 3

Algorithm 1: Adam
Input: Training data S, learning rate η, weights w,

fuzz factor ε, learning rates decay over each
update r1 and r2, exponential decay rates
β1=0.9 and β2=0.999

Output: Updated weights w
1 ε← ε0 ≈ 10−8;
2 w ← w0;
3 r1 ← 0;
4 r2 ← 0;
5 t← 0;
6 while stopping criterion is not met do
7 Randomly shuffle the training data S ;
8 Sample a minibatch of size

m:{(x(1), y(1)), . . . , (x(m), y(m))} ∈ S ;
9 for i ∈ {1, . . . ,m} do

10 Ĝ← ∂
∂wi

cost(w, (x(i), y(i))); Gradient
calculation

11 t← t+ 1;
12 end
13 r1 ← β1r1 + (1− β1)Ĝ;
14 r2 ← β2r2 + (1− β2)Ĝ� Ĝ;
15 r̂1 ← r1

1−βt
1

;
16 r̂2 ← r2

1−βt
2

;
17 w ← w − η r̂1

ε+
√
r̂2

;
18 end

All of the experiments were conducted in a quiet room. The
participant was told to sit in a relaxed position and change their
eye state at will. Data was recorded as one continuous EEG
measurement obtained from the 14 electrodes placed in the
regions of interest (ROIs), as shown in Fig. 3a with the Emotiv
EEG Neuro-headset (shown in Fig. 3b). These ROIs were
located in the frontal (F), temporal (T), central (C), occipital
(O), and parietal (P) lobes. Odd numbers represent the left
hemisphere and even numbers represent the right hemisphere.
The duration of the measurement was 117 seconds and the
data was saved in chronological order to be able to analyze
temporal dependencies using forward-chain cross-validation.
The eye state was recorded via camera during the EEG



(a) ROIs (b) Emotiv Neuro-headset

Fig. 3. EEG measurement elements: (a) ROIs for EEG measurement, (b) Emotiv EEG Neuro-headset.
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Fig. 4. The architecture of the DNN model.

measurement and manually added to the file after analyzing the
video frames [17], [18]. Neurons’ activities generate different
wave patterns, including (1) δ (< 4 Hz), (2) θ (4−7 Hz), (3) α
(7−12 Hz), (4) β (12−30 Hz), and (5) γ (30−100 Hz), which
were the main inputs in this research [19]. The data includes

the measurements of the 14 ROIs, shown in Fig. 3 [17], [18],
for 14977 instances. Of the instances, 55% correspond to open-
eye state and 45% correspond to closed-eye state.

B. Models

Since EEG signals are non-stationary, the conventional
method of frequency analysis is not highly successful in
diagnostic classification [8]. Neurons in the perceptual system
represent features of the sensory input. The brain has a deep
architecture and learns to extract many layers of features. Fea-
tures in one layer represent combinations of simpler features
in the layer below and so on. This is referred to as feature
hierarchy [16]. Based on this idea, we have developed a DNN
model (shown in Fig. 4) with seven fully-connected layers.
The architecture of the model was chosen after using a rapid
Bayesian optimization, along with the rules of thumb presented
in Table I. To benchmark the results from the DNN model, a
gradient boosting model, implemented using the XGBoost API
in Python [20], was also trained on the same training set.

The main purpose of this paper is to show how the results
from a DNN model can be as interpretable as a gradient
boosting model while exceeding the accuracy. The acceptance
of the interpretability of complex models would open new
avenues to employ more sophisticated models for various ap-
plications, including diagnosis and early detection of illnesses.
In principle, deep learning models involve optimization to
find the best weights at each layer of the DNN in order to
decrease the cost on the entire training set [21]. Optimization
is an arduous and time-consuming problem even without the
complexity that non-convex models, such as DNNs. In contrast
to the traditional optimization methods in which the optimiza-
tion of the pure objective function is the direct goal, finding
some weights that minimize the cost function and reduce the
expected generalization error respectively in DNN is indirect.
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Fig. 5. The evolution of the loss (binary cross entropy) and accuracy for the training/testing sets through different epochs for the trained deep model.
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Fig. 6. The trained XGBoost model performance: (a) evolution of the AUC through the boosting rounds with 10-folds CV in training, and (b) the ROC
curves with 10-folds CV.

Additionally, in machine learning tasks the true distribution of
the training data set is unknown. To overcome this challenge
in our study, before optimization algorithms were applied
the true distribution of the training data was substituted with
the empirical distribution defined by the training data. There
are various optimization strategies, including grid search and
random search, as well as advanced strategies such as Bayesian
optimization, which can be employed along with optimization
algorithms with adaptive learning rates for the training phase
of the DNN model [16].

In this paper, the DNN model was trained for 2000 epochs
with a batch size of 100. The Adam algorithm, as shown
in Algorithm 1 (with default built-in hyper-parameters in
Keras API and TensorFlow backend [22]), was chosen as the
optimizer with binary cross entropy as the loss function.

IV. RESULTS & DISCUSSION

Both models were trained on the same training set and
were tested on the same testing set. Fig. 5 illustrates the
loss/accuracy evolution of the DNN model through 2000
epochs for training/testing sets. Similarly, Fig. 6a presents the
evolution of the area under ROC curve (AUC) through 1000

boosting rounds for training/testing sets, while Fig. 6b presents
the forward-chain 10-fold cross-validation ROC curves with
confidence intervals of ±1 standard deviation of the AUC
in 10 folds. In addition to this, Fig. 7 illustrates the feature
importance of the trained model based on the total gain metric.
The gain implies the relative contribution of the corresponding
feature to the trained model calculated by taking each feature’s
contribution for each tree in the model. A higher value of
this metric when compared to another feature implies that
the corresponding feature has more impact for generating a
prediction. In principle, total gain is the total improvement
in evaluation metric (AUC here) brought by a feature with
respect to all features to the branches it is on. In fact, before
adding a new split on a feature X to the branch, there were
some wrongly classified elements, after adding the split on
this feature, there are two new branches, and each of these
branches would be more accurate (one branch saying if your
observation is on this branch, then it should be classified as 1,
and the other branch saying the exact opposite and it should
be classified as 0).

The basic idea of interpretability comes from the simplicity
of the model: the simpler model, the more explainable. For
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Fig. 7. The feature importance of the trained XGBoost model using total
gain.

complex models such as DNNs and ensemble methods includ-
ing gradient boosting, simplicity is not attainable. Therefore,
an approach is needed to replace the complex model with
an interpretable approximation of the original model. There
are several approaches to improve the explainability of a
model: (1) LIME [23], (2) DeepLIFT [24], (3) Layer-Wise
Relevance Propagation [25], (4) Shapley Regression Values
[26], and (5) Shapley Sampling Values [27]. In this paper,
we have used SHAP values to explain the importance of the
features based on the trained DNN model. SHAP (SHapley
Additive exPlanations) is a unified approach created to explain
the output of any machine learning model through connecting
game theory with local explanations. SHAP unifies several of
the previous methods and presents the only possible consistent
and locally accurate additive feature attribution method based
on expectations [28], [29]. For example, Deep explainer of
SHAP is inspired by DeepLIFT. [24]. DeepLIFT implies that
what we care about is not the gradient, which describes how
y changes as x changes at the point x, but the slope, which
describes how y changes as x differs from the baseline.

Fig. 8 illustrates the SHAP summary plots and feature
importance of the trained XGBoost model using tree explainer
and DNN models using deep explainer. The summary plot
combines the feature importance with feature effect, as seen
in Fig. 8c. For each of the features, the SHAP values and
their impacting contribution to the model (high as red, low as
blue) are shown. While SHAP values can have both positive
and negative values, for the sake of comparison, the average
of absolute Shapley values are used in Fig. 8a and Fig. 8b to
compare the global average impact on model output magnitude
between XGBoost and DNN models (Ij =

∑n
i=1 |φ

(i)
j |). The

idea behind SHAP feature importance is simple: features with

(a) XGBoost

(b) DNN

(c) XGBoost

Fig. 8. (a) and (b) illustrate the SHAP feature importance for the trained
XGBoost, and the DNN models while (c) presents the SHAP summary plot
for the trained XGBoost model.

large absolute Shapley values are important. As seen, the
top three important features (P7, O1, and F7) are the same



Fig. 9. Summary plot for SHAP interaction values based on the trained model
using XGBoost.

for both models with slightly different impacts. However, a
point of disparity in the models is the contribution of FC6,
which is high in the DNN model but much lower in the
XGBoost model. It is always recommended to compare the
feature importance of the features during training with their
SHAP values. As seen in Fig. 7, F8 gained slightly more
importance over F7 region, while F8 (SHAP ≈ 0.3) had
about 45% less average impact on model output magnitude
in comparison to F7 (SHAP ≈ 0.55). Similarly, this pattern is
repeated for the DNN model as F7 has the highest impact on
the model output magnitude based on the absolute value of
SHAP (SHAP ≈ 0.16), while F8 (SHAP ≈ 0.10) has roughly
40% less impact on the model output magnitude. The other
interesting pattern that can be seen is the higher contribution
of the low-impact regions based on the XGBoost model in
the DNN model. This is due to the non-linearity of the neural
network layers which lead to more complex components in
the DNN, while the XGBoost model with a tree depth of two
can just lead to second-order interaction between features [30].
This interaction is shown in Fig. 9 and is similar to a pair-wise
correlation matrix in that the interactions in the training phase
would be considered between each pair’s features. It should be
noted that, the tree depth can be increased, however as the tree
depth gets larger, so does the risk of over-fitting the model.

V. SUMMARY & CONCLUSIONS

In this paper, we have discussed why it is beneficial to have
a real-time framework for health monitoring systems using
models such as DNNs, as well as some of the explainability
complications involved in such models. Through our case
study we have illustrated that by using SHAP values, these
models can be interpretable, at least in the area of feature
importance. It should be noted the input signals can always
be noisy, especially in more complex datasets and increase
of the number participants, which requires more advanced
preprocessing techniques to produce explainable results.

Although the results were promising, it was not clear
whether the results were statistically significant since there
was only one participant. As the availability of data increases,
so does the opportunity for machine learning algorithms to

discover solutions to real-world problems. However, much of
this data is unstructured and complex, just as the EEG data
was in this case study. These challenges have pushed many
to forego traditional methods and innovate new, cutting-edge
approaches, many of which fall into the category of black-box
models. Many consumers of machine learning models will
not trust the results if they cannot understand the method.
While the mechanism and math of a black box model is
still a difficult concept to grasp, we hope that supplementing
predictions with understandable feature importance results will
go a long way in fostering trust in these methods. If this
trust cannot be gained, the benefit of cutting-edge methods
in machine learning is largely lost. Developing a framework
with even more complex algorithms such as convolutional
neural networks with the main objective of building trust in
consumers could open new avenues for future studies.
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