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Abstract

Purpose – Engineering design and operational decisions depend largely on deep understanding of
applications that requires assumptions for simplification of the problems in order to find proper solutions.
Cutting-edge machine learning algorithms can be used as one of the emerging tools to simplify this process. In
this paper, we propose a novel scalable and interpretable machine learning framework to automate this process
and fill the current gap.
Design/methodology/approach – The essential principles of the proposed pipeline are mainly (1)
scalability, (2) interpretibility and (3) robust probabilistic performance across engineering problems. The lack
of interpretibility of complex machine learning models prevents their use in various problems including
engineering computation assessments. Many consumers of machine learning models would not trust the
results if they cannot understand the method. Thus, the SHapley Additive exPlanations (SHAP) approach is
employed to interpret the developed machine learning models.
Findings – The proposed framework can be applied to a variety of engineering problems including seismic
damage assessment of structures. The performance of the proposed framework is investigated using two case
studies of failure identification in reinforcement concrete (RC) columns and shear walls. In addition, the
reproducibility, reliability and generalizability of the results were validated and the results of the framework
were compared to the benchmark studies. The results of the proposed framework outperformed the benchmark
results with high statistical significance.
Originality/value –Although, the current study reveals that the geometric input features and reinforcement
indices are the most important variables in failure modes detection, better model can be achieved with
employing more robust strategies to establish proper database to decrease the errors in some of the failure
modes identification.
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1. Introduction
Engineering design and operational decisions depend largely on engineers’ understanding of
applications that requires assumptions for simplification of the problems in order to find
solutions. The simplification process is often done with combination of computational
methodologies, engineering resources and field data. Adding robust optimization techniques
and machine learning algorithms to the current equation boosts the level of overall accuracy
in decision-making and design performance improvement to solve challenging engineering
problems and explore interpretibility of the solutions (Duda et al., 2001). Machine learning as
an applied scientific discipline has numerous advantages in real-world engineering problems
and applied sciences; the most fundamental its advantage is that a machine learning
algorithm can learn from empirical data where modeled phenomena are hidden, non-evident,
or not very well explained. Machine learning algorithms in civil engineering first used for
testing different existing tools on simple problems and gradually were applied to harder
problems. Recently, numerous studies show that universal nonlinear machine learning
algorithms including artificial neural networks, fuzzy logic, support vector machine, decision
trees and random forests can be used as adaptive tools for solving complex practical
classification and regression problems in engineering along with general properties of
statistical learning from data and the mathematical theory of generalization from experience
(Reich, 1997; Deka, 2019).

Emerging as one of the most contemporary machine learning techniques, gradient
boosting has shown success in various areas including stock price prediction (Nabi et al.,
2020), traffic speed forecast (Zhan et al., 2020), Alzheimer diagnosis (Liu et al., 2020) and
health monitoring systems (Tahmassebi et al., 2020). In addition to this, gradient boosting
has recently shown promising use in several engineering problems such as automatic
detection of cracks from concrete surface (Chun et al., 2021), structural damage assessment
for proper maintenance (Chun et al., 2020a, b), prediction of undrained shear strength
(Zhang et al., 2021) and safety evaluation of steel trusses (Truong et al., 2020), which opens
new avenue in modeling engineering problems including seismic damage assessment of
structures. The boosting principles and weak learners for the first time was proposed by
Schapire (1990) in 1990. Changing the distribution of the training iteratively is themain idea
of boosting algorithms. This principle helps to bias the training process towards the
specimens that are harder to classify. At each iteration, the boosting algorithm assigns a
weight to each training instance. At the end of each boosting round, the assigned weights
are getting updated adaptively. Thus, various bootstraps can be chosen from the original
training set via the updated weights where they play an important role as a sampling
distribution. This is the main principle of the base classifiers. Gradient tree boosting, also
known as gradient boosting machine (GBM) or gradient boosted regression tree (GBRT)
was originally proposed by Breiman and elaborated by Friedman in 2000 (Friedman et al.,
2000). The key principle of the boosting algorithms is to use some variants of weak (base)
learners in a bounded size. The most common types of weak learners for gradient tree
boosting models are decision trees which the prediction error can be updated with slight
modification of the weights at each round.

In this paper, we have employed one of the invariants of the boosting algorithm, named as
XGBoost which is short for eXtreme Gradient Boosting (Chen and Guestrin, 2016). XGBoost
uses somemodifications with respect to its predecessors such as sparsity-aware split finding,
weighted quantile sketch, and parallel structure which makes this algorithm scalable which
can be able to be used on high performance computing. To recapitulate, a gradient boosting
algorithm, first optimizes the loss function, makes the weak learner to predict the exemplars,
and uses an additive model to add weak learners to minimize the loss function. The type of
loss function can be chosen based on the type of problem and use-case. For example, a
squared error can be a good choice for regression problems while a logarithmic loss for
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classification problems as we have shown in Section 3. Moreover, XGBoost includes extra
implementations for the constraints that are applied on the additive model. The main benefit
of employing the decision tree as an additive model is the number of degrees of freedom we
would have in terms of hyper-parameters. In better words, the additivemodel can be changed
by increasing/decreasing the number of trees (estimators), number of leaves or terminal
nodes, the depth of tree or number of observations per split. In addition to this, other
objectives can be chosen based on the learning quality can be applied including minimum
improvement to loss, L1 (mean-absolute-error as regularize) and L2 (mean-squared-error as
regularize) weights (the value at each leaves) regularization which would results in huge
improvement in the results in comparison to classical machine learning models.

Many consumers of machine learning models will not trust the results if they cannot
understand the method. While the mechanism and math of a black-box model is still a
difficult concept to grasp, we hope that supplementing interpretability will go a long way in
fostering trust in these methods. The basic idea of interpretability comes from the simplicity
of the model: the simpler model, the more explainable. For complex models such as ensemble
methods (Choudhury et al., 2020) including gradient boosting, simplicity is not attainable. We
can name two important elements of a complex model: (1) the information that can be
algorithmically extracted and (2) the noise (Zhao andHastie, 2019). The complexmodels often
perform significantly better than the parametric models (in terms of prediction) and have
achieved tremendous success in applications across many fields (Hastie et al., 2005). Cutting
edge methods involving complex models have the ability to significantly improve outcomes;
however, the trade-off between accuracy and interpretability is a significant challenge in the
field of machine learning. Zhao and Hastie (2019) has shown multiples ways, including
Friedman’s partial dependence plot (Friedman and Meulman, 2003) and Pearl’s back-door
adjustment (Pearl, 2014), to determine causal interpretation of black-box models. Therefore,
an approach is needed to replace the complex model with an interpretable approximation of
the original model.

There are several approaches to improve the explainability of a model: (1) LIME (Ribeiro
et al., 2016), (2) DeepLIFT (Shrikumar et al., 2017), (3) Layer-Wise Relevance Propagation
(Bach et al., 2015), (4) Shapley Regression Values (Lipovetsky and Conklin, 2001), and (5)
Shapley Sampling Values (�Strumbelj and Kononenko, 2014). SHapley Additive exPlanations
(SHAP) is a unified approach created to explain the output of any machine learning model
through connecting game theory with local explanations. SHAP unifies several of the
previous methods and presents the only possible consistent and locally accurate additive
feature attribution method based on expectations (Lundberg and Lee, 2017; Lundberg et al.,
2018). There is amyth between gradient definition (how y changes as x changes at the point x)
and slope definition (how y changes as x differs from the baseline). SHAP implies that what is
important here is the slope rather the gradient.

In this paper, the details of the modeling design and interpretation framework are
explained in Section 2. Then, Section 3 presents the performance of the proposed framework
using two case studies. Last, the summary and conclusions of the current study are presented
in Section 4.

2. Modeling and interpretation framework
Modeling and interpretation framework includes three main components: (1) training, (2)
testing, and (3) generalization. Figure 1 illustrates the flowchart of the framework. As shown,
the pipeline begins with loading the database along with data preprocessing and feature
encoding (no feature standardization/scaling). The database is split into train/test sets in a
stratified fashion. This would be a crucial task to improve the generalization results due to
any imbalanced classification problem. In the training step, the feature standardization/
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scaling can be fitted to the train data and scaler object should be applied to the test set to
transform the test data into the scaled train data subspace (no fitting for test data). Next, the
hyper-parameters of the XGBoost model should be tuned. Fail to tune the hyper-parameter
values is one of the most common reasons for training a biased/over-fitted model.

There are various methods including exhaustive grid-search, random search and
Bayesian optimization (Snoek et al., 2012). Grid search provides an exhaustive search over
specified parameter values. All the possible combinations of the specified hyper-parameters
will be checked. In contrast to grid search, themain idea of random search is not all the hyper-
parameters values play an important role in the prediction results. Therefore, tying out a
fixed number of parameter settings can be sampled from the specific distributions. Therefore,
by random sampling, the most important hyper-parameters can be determined and the other
hyper-parameters settings can be kept fixed. The learning slope will be positive while the
similar outcomes would not be replicated. Checking all the combinations of the hyper-
parameters also requires large enough computational time where designing a pipeline to
predict what combinations are likely to work well using machine learning methodologies
could help to rescue from this challenge. This can be done by predicting the regions of the
hyper-parameter space that might give better outcomes and calculating the uncertainty of
that prediction using Gaussian Process models for each new combination of hyper-

Figure 1.
Modeling and
interpretation
framework flowchart
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parameters. Gaussian processes provide a simple, principled, practical and probabilistic
approach in machine learning with an essential assumption that similar inputs give similar
outputs. This simple and weak prior is actually very sensible for the effects of hyper-
parameters. Bayesian optimization, is a constrained global optimization approach built upon
Bayesian inference and Gaussian process models to find the maximum value of an unknown
function in the most efficient ways (less iterations) (Tahmassebi, 2018; Tahmassebi and
Smith, 2021).

After tuning the hyper-parameters, themodel can be trained and the fitnessmetrics can be
evaluated using both training and testing data sets. Finally, the visualization modules of the
training stage including the evolution of the performancemetrics on both training and testing
data sets, visualization of the trained XGBoost trees and the XGBoost feature importance can
be employed. The testing stage begins with running the testing visualization modules
including receiver operating characteristic (ROC) curves and confusion matrix. Finally,
SHAP values can be calculated for the testing data and SHAP visualization modules can be
applied on the testing data.

The main idea of generalization (as shown in Figure 1 in the box with dashed line) is to
validate the reliability of the model by permuting the train/test data. This would reduce the
possibility of the stochastic results by incorporating the statistical significance of the
classificationmetrics overmultiple iterations. The generalization step begins with initializing
the number of the iterations (n5 1, 2, . . .,N). Then, for each iteration, the random seed is being
initialized (new random seed5 random seed3 n) to maximize the possibility of the coverage
of the whole data in train/test sets. Consequently, the train/test split module in a stratified
fashion with the new random seed along with model training module and the best set of
hyper-parameters from the training component can be employed. It should be noted that we
should not incorporate a dynamicmodule to tune the hyper-parameters at each iteration since
the main idea here is to evaluate how reliable the trained model can be for different
permutation of the database. For each trained model, classification metrics can be calculated
based on the testing set (comes from a unique random seed). For instance, for N iteration, we
would have N models, and each model can be validated over its testing set using a
classification metric. Therefore, we end up with an array of metric values of sizeNwhich can
be used for statistical significance tests and confidence intervals.

3. Results and discussion
In this section, the performance of the proposed framework is investigated via two case
studies (1) failuremodes in RC columns, and (2) failuremodes in RC shear walls. In addition to
this, the reproducibility, reliability and generalizability of the trained models is validated and
the results of the proposed pipeline are compared with similar studies.

3.1 Case study 1: failure modes in RC columns
In this experimental study, the data contains 311 specimens of circular and octagonal RC
columns with 3 failure modes including 217 in flexure, 50 in flexure-shear, and 44 in shear.
Themain features of the database to classify the failuremodes are (1) aspect ratio (a/D), where
a is the shear span length, and D is the diameter of circular columns, (2) axial load ratio
ðP=f 0cAgÞ, whereP is the axial load on the column, f 0c is the compressive concrete strength, and
Ag is the cross sectional area of the column, (3) longitudinal reinforcement index ðρl fy=f 0cÞ
where ρl is the longitudinal reinforcement ratio, and fy is the yield strength of longitudinal
reinforcement, and (4) transverse reinforcement index (ρsfyh/ft), where ρs 5 4Asp/ds is a
composite factor of transverse reinforcement area Asp and the distance between hoops ds,
yield strength of transverse reinforcement fyh, and tensile concrete strength ft (Mangalathu
et al., 2020a, b).
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As discussed in section 2, the data is split into train/test sets in a stratified fashionwith 70%
as training and30%as testing (66 specimenswith flexure, 15 specimenswith flexure-shear, and
13 specimens with shear failure modes). The hyper-parameters of the trained XGBoost model
was chosen using Bayesian optimization. Figure 2a illustrates the evolution of the multi-class-
logarithmic-loss (mlogloss) as the chosen evaluationmetric over the number of boosting rounds
for both training and testing sets. As seen, the mlogloss values decay for both training and
testing sets through number of boosting rounds. This fact validates the trainedmodel as a just-
right fitted model and vanishes any chance of over-fitting. In addition to this, Figure 2b depicts
the ROC curves with area under curve (AUC) of various failure modes of RC columns. An ROC
curve presents false positive rate (1-specificity) versus true positive rate (sensitivity or recall)
under different classification thresholds. The true positive rate is the proportion of positive

(a)
Evolution

ROC
(b)

Figure 2.
XGBoost performance
curves: (a) Evolution of
log-loss for the train/
test sets through
number of boosting
rounds and (b) ROC
curves of various
failure modes of RC
columns
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cases that are correctly classifiedwhile the false positive rate is the proportion of negative cases
that are incorrectly classified as positive. The performance can be evaluated throughhowwell a
model separates the truepositive rate from the false positive rate.The areaunder theROC curve
provides a straightforward measure where an AUC of 1.0 represents a perfect model and an
AUC of 0.5 represents a worthless (stochastic) model. The closer the AUC to 1.0, the better the
model. As shown in Figure 2b, the solid lines present the curve for each of the failure modes
separately and the red and blue dashed lines present micro-average (weighted-average) and
macro-average (numeric-average) AUCs, respectively.

Table 1 presents the classification results of the trainedmodel applied on the testing set for
various failure modes of RC columns. This table includes the report of precision, recall, f1-
score, and accuracy for all three modes separately. In addition to this, macro-average, and
micro-average calculation of the classification metrics are also presented. The trained
XGBoost model has the best performance in predicting of flexure modes with a precision of
0.96, recall of 0.98, and accuracy of 0.98. This could be due to extra presence of the flexure
modes in the training data (typical imbalanced classification problem statement). However,
themodel showed lower recall in prediction of flexure-shear failure mode, and lower precision
in prediction of shear failuremode in the testing set. Additionally, the shear and flexure-shear
failuremodes both have close precision around 0.80, while their recall values are 15%off from
each other with the fact that the shear and flexure-shear failure modes both cover the same
fraction of the train/test sets (around 16%). This would rise the fact that how important is to
use a stratified fashion for train/test splits to minimize any possibility of over-fitting. This
would also increase the chance of training a generalizable model with even small number of
specimens in any database. Figure 3 presents the confusion matrix of the classification
results of the testing set. The diagonal elements represent failure modes that are predicted

Failure mode Precision Recall F1-score Accuracy

Flexure 0.96 0.98 0.97 0.98
Flexure-Shear 0.82 0.60 0.69 0.60
Shear 0.80 0.92 0.86 0.92
Macro-Average 0.86 0.84 0.84 0.83
Micro-Average 0.91 0.91 0.91 0.91

Table 1.
Classification results of

trained model in
prediction of testing set

for various failure
modes of RC columns

Figure 3.
Confusionmatrix of the
classification results of

trained model over
testing set for various
failure modes of RC

columns
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correctly. Among 66 specimens in flexure class, 1 case was incorrectly classified as flexure-
shear, and among 13 specimens with shear class, 1 case was incorrectly classified as flexure-
shear. In principle, the trained model has good ability to distinguish between flexure
and shear cases and it did not classify any of the specimens in these classes as the other class,
while among 15 specimens with flexure-shear, 3 specimens were incorrectly classified as
flexure, and 3 specimens were incorrectly classified as shear (60% accurate). Therefore,
increasing the number of specimens with flexure-shear or adding more features with the
ability to decrease the marginal error between flexure and shear would improve the model
performance. Mangalathu et al. (2020a) have also previously noted that it is often arduous to
properly establish the decision boundaries between flexure-shear and other modes of failure.

One of themost important aspects of the training amodel is how the features contribute in
the training process which can be used as a metric to measure the relative impact of the
features in the trained model. Figure 5 illustrates the feature importance of the trained model
based on the total gainmetric. The gain implies the relative contribution of the corresponding
feature to the trained model calculated by taking each feature’s contribution for each tree in
the model. A higher value of this metric when compared to another feature implies that the

Figure 5.
Feature importance of
the trained XGBoost
model for RC columns

Figure 4.
First trained tree of the
XGBoost model for RC
columns
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corresponding feature has more impact for generating a prediction. In principle, total gain is
the total improvement in evaluation metric (mlogloss here) brought by a feature with respect
to all features to the branches it is on. In fact, before adding a new split on a feature X to the
branch, there were some wrongly classified elements, after adding the split on this feature,
there are two new branches, and each of these branches would be more accurate (one branch
saying if your observation is on this branch, then it should be classified as 1, and the other
branch saying the exact opposite and it should be classified as 0). As shown in Figure 5,
aspect ratio has the most impact in the model and its total gain is more than two times more
than the total gain of the transverse reinforcement index which is the next important feature
in the model. This can also be seen by looking at the first couple trained trees. Figure 4
illustrates the first trained tree of the XGBoost model. As seen, the first split is over aspect
ratio, and second splits over transverse reinforcement index and axial load ratio, respectively.

In addition to the XGBoost feature importance plot, SHAP can be a great tool in order to
reveal the interpretation of each single predictions of the trained model. Figure 6 presents the
SHAP summary plots of the trained XGBoost model for (1) flexure, (2) shear and (3) flexure-
shear failure modes using tree explainer which is a combination of the feature importance
with considering the feature effect. For each of the features, the SHAP values (each dot in the
summary plot) and their impacting contribution (range and distribution) to themodel (high as
red, low as blue) are shown. The density of the dots in the summary plot indicates the real
distribution of the exemplars in the testing data set. As seen, the aspect ratio is the important
feature which indicates the importance of the geometry of the columns. This result is along
with what we have already seen in Figure 5 (importance over the training set) which indicates
the fact that model is properly trained and the possibility of over-fitting is reasonably

Figure 6.
SHAP summary plots
of the testing set for

various failure modes
of RC columns: (a)

Flexure, (b) Shear and
(c) Flexure-Shear
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minimized. However, the aspect ratio has shown different impacts based on the failuremodes.
For instance, having larger values (in the test set) for aspect ratio in the shear failure mode
summary plot as shown in Figure 6b has shown counter-predictive response in the trained
model while larger aspect ratio values has shown direct response in prediction of the flexural
model as depicted in Figure 6a. Next impactful feature is the transverse reinforcement index
where higher values have counter-predictive response in the trained model for shear and
flexure-shear failuremodes. On the contrary, it can be seen in Figure 6a that higher transverse
reinforcement index values increase the possibility of the flexural failure. The longitudinal
reinforcement index and the axial load ratio are the next important features in which they
have shown mixed impacts. For instance, the longitudinal reinforcement index has shown
inverse response between flexure and shear failure modes. In fact, the specimens with higher
longitudinal reinforcement index have shown counter-predictive responses for flexural
failure (Figure 6a) while they have predictive responses in shear failure (Figure 6b). Figure 6c
presents the SHAP summary plot of the flexure-shear failure model. Despite the other two
failure modes, the SHAP values of the flexure-shear failure mode have shown consistency
with their actual values. In principle, as the feature values decrease, the predictive responses
of the model increase.

While SHAP values can have both positive and negative values, for the sake of
comparison, the average of absolute SHAP values are used in Figure 7 to compare the global

average impact on the model output magnitude (Ij ¼
Pn

i¼1jwðiÞ
j j) for flexure (blue bar), shear

(magenta bar), and flexure-shear (olive-green bar) modes of failure. The idea behind SHAP
feature importance is simple: features with large absolute SHAP values are important. This
would be the global impact of the features over the testing set for each failure mode. It is
always recommended to compare Figure 7 with the XGBoost feature importance (Figure 5).
As seen, the features have the same ranking in both of the figures and they share close
impact/importance over the model. For instance the aspect ratio has 2.4, 4.1, and 5.4 times
more total gain than transverse reinforcement index, longitudinal reinforcement ratio, and
axial load ratio, respectively. Similarly, the aspect ratio has 1.5, 3.8 and 3.8 timesmore average
impact on model output magnitude than transverse reinforcement index, longitudinal
reinforcement ratio, and axial load ratio, respectively. It should be noted that the XGBoost
total gain (feature importance) is calculated over the course of the training data while the
SHAP summary plot is calculated based on the trained model over the course of testing data.

3.2 Case study 2: failure modes in RC shear walls
In this experimental study, the data contains 393 specimens of RC shear walls in which 238 of
the specimens have a rectangular, 95 with barbell type, and 60 with flanged cross sections. It
should be noted that all of the presented shear walls include symmetric cross sections and

Figure 7.
SHAP summary plot of
the testing set with
absolute impact of the
features for various
failure modes of RC
columns
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continuous longitudinal reinforcement without lap splices, deformed, and straight
reinforcement. Moreover, the selected specimens with RC shear walls have 4 failure modes
including 152 in flexure, 122 in shear, 96 in flexure-shear, and 23 in sliding-shear. The main
features of the database to classify the failure modes are (1) aspect ratioM/Vlw calculated as
the shear span length to the wall length whereM is the base moment,V is the base shear, and
lw is the wall length, (2) length to thickness ratio of the wall lw/tw, where tw is the thickness of
the wall, (3) axial load ratio ðP=f 0cAgÞ, where P is the axial load on the column, f 0c is the
compressive concrete strength, andAg is the cross sectional area of the column, (4) ratio of the
boundary element to cross sectional areaAb/Ag, whereAb is the boundary element, (5) section,
(6) web vertical reinforcement index ρvwfy;vw=f

0
c, where ρvw is the vertical reinforcement ratio

of the web, and fy,vw is the vertical yield strength of web reinforcements, (7) web horizontal
reinforcement index ρhwfy;hw=f

0
c, where similarly ρhw is the horizontal reinforcement ratio of

the web, and fy,hw is the horizontal yield strength of web reinforcements, (8) boundary element
vertical reinforcement index ρvcfy;vc=f

0
c, where ρvc is the vertical reinforcement ratio of the

boundary element, and fy,vc is the vertical yield strength, and (9) boundary element horizontal
reinforcement index ρhcfy;hc=f

0
c, where ρhc is the horizontal reinforcement ratio of the

boundary element, and fy,hc is the horizontal yield strength (Mangalathu et al., 2020a, b).
Similar to the first case study, the data is split into train/test sets in a stratified fashion

with 70% as training and 30% as testing (46 specimens with flexure, 29 specimens with
flexure-shear, 36 specimens with shear and 7 specimens with sliding-shear failure modes).
The section feature includes various cross section shapes including rectangular, barbell, and
flangedwith categorical values. The categorical values are encoded as integers for the sake of
modeling. Moreover, the hyper-parameters of the trained XGBoost model was chosen using
Bayesian optimization. Similarly, Figure 8a illustrates the evolution of the mlogloss over the
number of boosting rounds for both training and testing sets and Figure 8b shows the ROC
curves of various failure modes of RC shear walls, where the solid lines present the curve for
each of the failure modes separately and the red and blue dashed lines present the micro-
average and macro-average AUCs, respectively. As seen, the mlogloss values decay for both
training and testing sets through number of boosting rounds, flexure and flexure-shear
failure modes have the best AUC values (0.98), and sliding-shear failure mode has the worst
performance with an 0.86 AUC among all failure modes of the RC shear walls.

Table 2 presents the results of the trained model in prediction of the testing set for various
failure modes of RC shear walls. The trained XGBoost model has the best precision in
prediction of the sliding-shear failure mode, the best recall and accuracy in prediction of the
flexure-shear failuremode, and the best f1-score in prediction of the shearmodewith values of

Figure 8.
XGBoost performance
curves: (a) Evolution of
log-loss for the train/

test sets through
number of boosting
rounds, and (b) ROC

curves of various
failure modes of RC

shear walls
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1.0, 0.93, 0.93 and 0.90, respectively. The probabilistic values can be taken from their AUC
values based on the ROC curves according to Figure 8b where flexure, and flexure-shear
modes they both have an AUC of 0.98, shear mode has an AUC of 0.97, and the sliding-shear
mode has the worst AUC (0.86). Furthermore, Figure 9 presents the confusion matrix of the
classification results of the testing set. High precision and low sensitivity (recall) values of the
sliding-shear failure mode can be due to the few number of specimens in the experimental
database that can be a good point of attention for the future studies. Feature contribution of
the trainedmodel is presented in Figure 11 using the XGBoost total gainmetric, where similar
to the RC columns case study, the aspect ratio has the highest total gain among all of the
features. This implies that the geometrical features still play the most important role in RC
failure assessment. Similar to the RC column results, this fact can also be seen by looking at
the first couple trained trees, where the first split is over the aspect ratio. Figure 10 illustrates
the first trained tree of the XGBoost model.

Figure 12 presents the SHAP summary plots of the trained XGBoost model for (1) flexure,
(2) flexure-shear, (3) shear and (4) sliding-shear failure modes using tree explainer. Similar to

Failure mode Precision Recall F1-score Accuracy

Flexure 0.87 0.89 0.88 0.89
Flexure-Shear 0.79 0.93 0.86 0.93
Shear 0.94 0.86 0.90 0.86
Sliding-Shear 1.00 0.57 0.73 0.57
Macro-Average 0.90 0.81 0.84 0.82
Micro-Average 0.88 0.87 0.87 0.87

Table 2.
Classification results of
trained model in
prediction of testing set
for various failure
modes of RC
shear walls

Figure 10.
First trained tree of the
XGBoost model for RC
shear walls

Figure 9.
Confusionmatrix of the
classification results of
the trained model over
the testing set for
various failure modes
of RC shear walls
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Figure 5, the aspect ratio is the most important feature which indicates the importance of the
geometry in prediction of the failure in shear walls. The higher values of the aspect ratio
showed linear correlation with the prediction of the flexure (Figure 12a), and flexure-shear
(Figure 12b), while they have inverse effects (counter-predictive feature) on sliding-shear
(Figure 12d) and shear (Figure 12c) failure modes. Following the aspect ratio, the boundary
element vertical reinforcement index has shown mixed importance based on the testing set

Figure 11.
Feature importance of
the trained XGBoost

model for RC
shear walls

Figure 12.
SHAP summary plots
of the testing set for

various failure modes
of RC shear walls:

(a) Flexure, (b) Flexure-
Shear, (c) Shear and

(d) Sliding-Shear

Explainable
prediction
framework



where higher values of the vertical reinforcement index has predictive responses in prediction
of shear failure modes while they have shown counter-predictive responses in prediction of
flexure failure mode. In addition to this, length to thickness ratio is the second impactful
feature in prediction of the flexure-shear failure mode while it has not shown importance in
prediction of the other failure modes which can be clearly seen in Figure 13 as the global
average impact on the model output magnitude for flexure (purple bar), shear (blue bar),
flexure-shear (red bar), and sliding-shear (green bar) modes of failure. The aspect ratio,
horizontal and vertical boundary element reinforcement indices, following by the horizontal
and vertical web reinforcement indices are the top five featureswith the highest global impact
in prediction of various failure modes of RC shear walls. It should be noted that the SHAP
explainability has numerous variations and in this study only some of them were presented,
while the proposed framework does have the ability to visualize all of the available SHAP
visualizations (more on https://github.com/slundberg/shap).

3.3 Generalization study
Last, the validation of the generalizability of the proposed models is desired. As shown in
Section 2, the proposed framework has the feature to validate the results to be reproducible
and statistically reliable. For example, themain train/test runs of both case studies resulted in
micro-average AUC 5 0.987, and AUC 5 0.968 for RC columns and RC shear walls,
respectively. The confidence interval (CI) for any significance level can be calculated using
the following formula:

CI ¼ Score±ZScore3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Score3ð1� ScoreÞ

N

r
(1)

where ZScore for 95% significance level is 1.96, andN is the testing sample size. Therefore, the
CI for the micro-average AUC of RC columns (Score 5 0.987 and N 5 94) would be [0.965,
1.00], and similarly the CI for the micro-average AUC of RC shear walls (Score 5 0.968 and
N 5 118) would be [0.937, 1.00]. The presented CIs are true based on the central limit of
theorem (Duda et al., 2001) if we have normal distributions for the scores which can be
acquired if we have big enough sample size. To simulate this theorem and validate the
generalizability of the models, 1000 different runs with random-stratified train/test sets as
defined in Section 2 employed. Figure 14 illustrates the histograms of the micro-average
AUCs based on the 1000 generalization runs with random-stratified train/test sets for (1) RC
columns, (2) RC shear walls, where the light-blue solid line, navy dashed line, and red dashed
lines present the kernel density estimation, median (50th percentile), lower and upper
confidence intervals, respectively. In addition to this, the scatter point with star marker

Figure 13.
SHAP summary plot of
the testing set with
absolute impact of the
features for various
failure modes of RC
shear walls
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depicts the micro-average AUC resulted based on the prediction of each trained model over
the testing set. The generalization confidence intervals with 95% statistical significance level
for RC columns and RC shear walls are CI 5 [0.9539, 0.9873] and CI 5 [0.9255, 0.9723],
respectively. As shown, the micro-average AUCs of the testing sets (star markers) are inside
the experimental confidence intervals for both case studies which proves the fact that the
presented models are statistically generalizable with 95% significance level. Moreover, the
micro-average AUCs of the main models are in the right tail of the distributions which can be
due to the tuned hyper-parameters of the XGBoost resulted from the Bayesian optimization.
In addition to this, the performance of two case studies can be compared via the spread of two
distributions. As shown in Figure 14, the histograms for RC shear walls (Figure 14(b)) has a
wider spread. This can be due to higher number of failure modes in RC shear walls study and
relatively close number of specimens in the study. This can be used as a useful notes to
engineers to take into account before designing experiments.

3.4 Comparative study
As a comparative study, we have outperformed the results of the best models presented by
Mangalathu et al. (2020a) based on the same experimental database. They have employed
random forests as the best models with micro-average testing accuracy of 84% and 86% for
RC columns, and RC shear walls, respectively. However, as we reported in Table 3, the
presented XGBoost models have improved the micro-average testing accuracy for 7% and
2% for RC columns, and RC shear walls, respectively. In addition to this, we have compared
the overall precision and recall of the models, where the models presented by the current
framework outperformed the random forests models. It should be noted that the testing size
in both studies was set to 30% of the data. The proposed framework showed robust
performance in multi-label imbalanced classification while the results presented by
Mangalathu et al. did not handle this issue. In principle, Mangalathu et al. did not pay

Database Model Accuracy Precision Recall

RC Columns XGBoost 0.91 0.91 0.91
Random Forest 0.84 0.86 0.84

RC Shear Walls XGBoost 0.88 0.87 0.87
Random Forest 0.86 0.86 0.86

Note(s): All the metrics are evaluated as on the testing data and they all reported as micro-average

Figure 14.
Histograms of the

micro-average AUCs
based on the

generalization runs
with random-stratified
train/test sets for (a) RC
columns, (b) RC shear

walls. The stars
illustrate the related
performance of the

trained models
presented in Section 3.
The figures share the
same y-axis scale for

the sake of comparison

Table 3.
Comparison of the

classification results of
the proposed

framework with the
model presented by

Mangalathu
et al. (2020a)
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attention to the importance of the stratification of the imbalanced classes and this was ended
upwith misleading results. In fact, in imbalanced classification problems the crucial goal is to
find a trade-off to predict the low prevalence class as well as the high prevalence class, while
training amodel that detects the high prevalence class is not a challenge and the performance
would be still reasonably high. However, stratification helps to prevent this issue for any test
scenarios and prevents possible risks and damages. It is crucial to keep the prevalence of each
class in both training and testing sets. Therefore, their models were not generalizable enough
since they did not learn all the classes equally. Moreover, boosting algorithms change the
training data distribution iteratively with the goal of predicting the specimens that are harder
to classify. This feature would enable the proposed framework to outperform the random
forest models that are based on constructing parallel decision trees, while XGBoost is a result
of a sequence of decision trees.

4. Summary and conclusions
In this paper, we have proposed an scalable-interpretable modeling framework which can be
applied to a variety of engineering problems. The pipeline was applied on two case studies:
(1) failure modes in RC columns and (2) failure modes in RC shear walls. The results of the
pipeline for both studies were compared to the benchmark study. Clearly, the results of the
proposed pipeline outperformed the results that were presented in the benchmark study and
passed the reliability validation tests with high statistical significance. This would give the
experimental domain experts enough insights to plan studies that will help establishing
better experimental database to reveal the flaws of the current models that would help
creating better machine learning models in the future.

In addition, we have discussed why it is beneficial to use gradient boosting models, as
well as some of the explainability complications involved in such models. Through our case
studies we have illustrated that by using SHAP values, thesemodels can be interpretable, at
least in the area of feature importance. As the availability of data increases, so does the
opportunity for machine learning algorithms to discover solutions to real-world problems.
Many consumers of machine learning models will not trust the results if they cannot
understand the method. While the mechanism and math of a black-box model is still a
difficult concept to grasp, we hope that supplementing predictions with understandable
feature importance results will go a long way in fostering trust in these methods. If this
trust cannot be gained, the benefit of cutting-edge methods in machine learning is
largely lost.
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Appendix

(1) Precision 5 True Positive/(True Positive þ False Positive)

(2) Recall 5 True Positive/(True Positive þ False Negative)

(3) F1-Score 5 2 3 True Positive/(2 3 True Positive þ False Positive þ False Negative)

(4) Accuracy 5 (True Positive þ True Negative)/(True Positive þ True Negative þ False
Positive þ False Negative)
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