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ABSTRACT

Dementia progression is based on exploring models predicting longitudinal disease patterns and represents a
challenging research field for neurodegenerative diseases. Conventional progression models are mainly continu-
ous network diffusion models assuming a radial contact-based spreading. In dementia-affected brain networks,
however, we observe atrophy in specific brain regions that do not assume omni-directional contact-based disease
progression but favor a path-based progression relying on misfolded and aggregated proteins flowing from one
region to another. Here, we propose a novel concept to biologically model disease progression based on an disease
characterization matrix that comprises both the routing and the amount of traversing proteins. We compare
the path-based spreading with the contact-based spreading mechanism for brain network graphs for structural
MRI data for healthy controls, mild cognitive impairment and Alzheimer’s patients. As biomarkers we extract
critical epidemic thresholds for both spreading mechanisms. The path-based spreading mechanism corroborates
the clinical observations that disease spreading in dementia is persistent and thus increasing the transportation
of misfolded and aggregated proteins as with disease evolution will lower the critical epidemic threshold.
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1. INTRODUCTION

Alzheimer’s disease (AD) is one of the most prevalent late life dementia and puts an enormous social and economic
burden on our society. Graph theoretical concepts have been for a long time applied in brain research2, 5, 10, 12 as
have been dynamical systems3, 4, 6, 7, 9 mapped on brain graphs.

The AD disease represents an amyloid-facilitated tauopathy originating in the hippocampus and subsequently
advancing to the temporal, parietal and prefrontal cortices. It starts by an accumulation of misfolded and
aggregated proteins and progresses along fiber pathways. Morphological and functional changes caused by this
pathological progression have been observed on MRI and FDG-PET scans. Progression was shown to favor
vulnerable fiber pathways and not neighboring regions. The mechanisms of this networked spread were modeled
by predictive network diffusion models as shown in11 and are not taking into account the above-mentioned
problems.

To overcome the modeling challenges of dementia progression, we propose two different network models for
dementia progression centered around two different paradigms: (a) contact-based progression vs. (b) path-based
progression as shown in Figure 1.

Here we propose to apply epidemic theory to model dementia spread in brain networks. The main aspects of
the theoretical framework in analytic epidemiology involve:

1. Disease states: the most common models found are the SIS and SIR.1 These two models involve as possible
states:

• Susceptible (S): subjects that are not infected yet but prone to infection.

• Infected (I): subjects that are infected and contagious.
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Figure 1. Contact-based vs. path-based in network spread models. Node 0 is the source of atrophy. Grey nodes are
susceptible nodes; (left) Contact-based spread of misfolded and aggregated proteins only affect immediate neighbors on
all directions; (right) Path-based spread affect all nodes along the probation pathways where misfolded and aggregated
proteins traverse and neighbors having no interaction with the affected node are not prone to degeneration. Reprinted
from1 with permission from IEEE.

• Removed (R): subjects that are neither prone to infection or contagious.

2. Infection mechanism: describing how the disease is transmitted from one subject to another. Mathemat-
ically this is described by a transition of the states. This is coupled with the effective spreading rate as
τ = β

δ
where β is the infection rate and δ is the curing rate.

We consider a continuous-time model for mathematical prediction of disease topography from transneuronal
transmission on the brain’s connectivity network. The graph-based models are derived from epidemic models
and particularly from the class of susceptible-infected-susceptible (SIS) models. We consider an undirected graph
network G(V,E) that has a set of vertices V = {v1, v2, · · · , vN} and a set of edges E = {e1, e2, · · · , eL}. G is
represented by an adjacency matrix A which is a symmetric N ×N matrix.

Every node n at time t in the network has two states: infected or healthy, and at each moment t a node can
be only in one of these two states. As proposed in,1 we denote with Xn(t) the state of the node n at time t

and Xn(t) being either ”infected” or ”susceptible”. The probability of a node n being in the infected is state is
denoted as in(t) = Pr[Xn(t) = 1] and of being in the healthy state is sn(t) = Pr[Xn(t) = 0] = 1 − in(t). By
applying directly Markov theory, we obtain an infinistesimal generator Qi(t) of this two-state Markov chain

Qi(t) =

(

−q1;i q1;i
q2;i −q2;i

)

. (1)

with q2;i = δ being the curing rate. The q1;i depends on the propagation model and includes the information
about the network topology via the connection matrix A for the contact-based spreading model and about the
traffic matrix Γ and routing matrix R for the path-based spreading model. We further assume that both infection
rate β and curing rate δ are constant.

There is a critical threshold, the so-called epidemic threshold τC , below which the spread of the disease will
almost die off and vice versa. For each of the models, there is a specific value.

Currently, there are two mainstream directions regarding infection propagation: the contact-based assuming
a radial infection propagation of the same probability and path-based which favors a certain direction. The path-
based is overcoming two important limitations of the contact-based: (1) spreading follows certain directions and
neighbors are infected with different probabilities, and (2) it takes into account the transportation of an infectious
agent.
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2. PATH-BASED DEMENTIA PROGRESSION IN COGNITIVE NETWORKS

2.1 Modeling of the Traffic of Misfolded and Aggregated Proteins

There exists traffic from the source and we encode the traffic matrix describing the traffic through the nodes it
traverses by the following routing matrix R1

rn,k =

{

1 : if the traffic on path k traverses across n or is destined to n

0 : otherwise
(2)

Besides the matricesA and R, we also define matrix B as the conditional betweenness centrality. The betweenness
centrality measures how often each graph node lies on the shortest path between two nodes in the graph. The
centrality of a given node u is given as

b(u) =
∑

s,t6=u

nst(u)

2Nst

(3)

with nst(u) being the number of shortest paths from s to t that go through node u, and Nst being the total
number of shortest paths from s to t. The nodes are as shown in1 weighted with their specific traffic generation
rate. Let Λ be a N × 1 vector with the entry λi representing the traffic generation rate of the nodes in G, then
we obtain for the total traffic node n

C = diag(Λ)×B (4)

with diag(Λ) representing the diagonal matrix. We assume λi = 1 for our applications and that the traffic
distribution is uniform. In parlance of epidemiology, we will define C asN×N disease progression characterization
matrix.

2.2 Path-Based Epidemic Threshold

An important parameter in epidemic networks is the so-called epidemic threshold τC . It is a critical threshold
parameter, theoretically defined as the measure above the epidemics persists.

As shown in,1 the disease progression dynamics is given as

I(t)

dt
= (βC − δ1)I(t) (5)

Solving this differential equation we obtain as a result:

I(t) = Udiag(e(βµ
C
n−δ)t)UT I(0) (6)

where U represents the orthonormal matrix with the n-th column being the eigenvector associated with the
eigenvalue µC

n .

Assuming there is insignificant recovery (curing) and we do have mainly disease progression, then the equation
from above becomes for δ ≈ 0

I(t) = Udiag(eβµ
C
n t)UT I(0) (7)

For a discontinuing disease progression, the eigenvalues must satisfy

βµC
n − δ ≤ 0 (8)

and this yields for the epidemic threshold the following value
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τ
path
C =

β

δ
≤

1

µC
max

(9)

For the epidemics to die off, the epidemic threshold τ
path
C is equal or smaller than the inverse spectral radius

of matrix C. Thus the disease progression characterization matrix C is the key component of the spreading
strength of dementia. µC

max is the spectral radius of the disease progression characterization matrix C.

3. CONTACT-BASED DEMENTIA PROGRESSION IN COGNITIVE NETWORKS

3.1 Contact-Based Time Evolution of Epidemics

We apply again directly Markov theory and we obtain an infinitesimal generator Qi(t) of a two-state Markov
chain similar to the path-based epidemics as shown in equation (1).

As shown in,8 the infection dynamics is given as

I(t)

dt
= (βA− δ1)I(t) (10)

with A being the symmetric adjacency matrix.

3.2 Contact-Based Epidemic Threshold

The time-dependent solution of equation (10) is given as

I(t) = (e(βA−δ)t)UT I(0) (11)

We use the eigenvalue decomposition A = UΛUT with Λ = diagλj and {λj}1≤j≤N being the set of eigenvalues
of A and U is the orthonormal matrix which has the eigenvectors of A as the columnvectors.

This yields as shown in8

I(t) = Udiag(e(βλj−δt))UT I(0) (12)

Assuming there is insignificant recovery (curing) and we do have mainly disease progression, then the equation
from above becomes for δ ≈ 0

I(t) = Udiag(eβλjt)UT I(0) (13)

For a decreasing disease progression, the eigenvalues must satisfy

βλj − δ ≤ 0 (14)

and this yields for the epidemic threshold the following value

τcontactC =
β

δ
≤

1

µA
max

(15)

For the disease to die off, the epidemic threshold τcontactC is equal or smaller than the inverse spectral radius of
matrix A. µAmax is the spectral radius of the adjacency matrix A.
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4. RESULTS

We apply the theoretical results for dementia progression based on contact- and path-based spreading on struc-
tural (MRI) connectivity graphs for control (CN), mild cognitive impairment (MCI) and Alzheimer’s disease
(AD) subjects. For the structural data, the connections in the graph show the inter-regional covariation of gray
matter volumes in different areas as obtained from MRI data. We considered only 42 out of the 116 from the
AAL in the frontal, parietal, occipital and temporal lobes as shown in.10 The nodes in the graphs represent the
regions while the links show if a connection is existing between these regions or not.

The original structural networks are shown in Figure 4.

We determined from Figure 4 the adjacency and infection characterization matrix and computed the corre-
sponding epidemic thresholds and spectral radius for controls, MCI and AD in Tables 1 and 2.

Contact-based spreading Path-based spreading
(Adjacency matrix A) (Disease progression characterization matrix C)

τcontactC τ
path
C

Controls 4.57 4.68
MCI 4.56 5
AD 4.75 3.83

Table 1. Epidemic thresholds for contact- and path-based disease progression in dementia networks.

We see that contact-based disease progression has lower critical thresholds than path-based ones with excep-
tion of AD showing that the path-based disease progression dies faster off. This can be explained based on the
fact that the contact-based disease progression occurs radially while the path-based relies on the transportation
of misfolded and aggregated proteins. Remarkable is that the path-based epidemic threshold for AD is the lowest
among controls, MCI and AD. This shows that with the disease evolution as seen with AD, the traffic load of
misfolded and aggregated proteins is increasing and at the same time decreasing the critical epidemic threshold.

Contact-based spreading Path-based spreading
(Adjacency matrix A) (Infection characterization matrix C)
µAmax µCmax

Controls 0.22 0.21
MCI 0.22 0.20
AD 0.21 0.26

Table 2. Spectral radius for contact- and path-based disease progression in dementia networks.

5. CONCLUSIONS

In this paper, we introduced and compared two disease progression processes in dementia networks, the so-called
contact-based and the path-based disease progression. We borrowed the corresponding concepts and terminology
from epidemiology and applied them to brain graph networks with particular emphasis on dementia networks.
Our results showed that the path-based disease spreading seems to optimally describe the transportation of
misfolded and aggregated proteins across brain networks. The standard disease progression model is based on
contact-based spreading and modeled by a network heat equation.

We applied the new concepts of path-based epidemic spreading and applied it on structural dementia networks,
and thus obtained a biologically plausible explanation of a disease progression model correctly reflecting the
increasing traffic load of proteins as AD advances. Our research will contribute towards a better understanding
of what the patient’s neuroanatomic state will be at any given point in future and unveil the regions that are
involved in disease propagation. This will provide new insights about brain organization and brain function,
that could not be observed from current studies. This new paradigm will provide us with important disease
descriptors showing changes over the disease trajectory such as the hubs of the dynamic system and the weakly
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Figure 2. Brain network graphs for structural data for (A) controls, (B) MCI and (C) AD as described in.10 Reprinted
from10 with permission from Frontiers.

connected areas. Examples are given to elucidate the theoretical results and are in compliance with clinical
findings.
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