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This paper aims at developing new theory-driven biomarkers by implementing and evaluating novel techniques from resting-
state scans that can be used in relapse prediction for nicotine-dependent patients and future treatment efficacy. Two classes of
patients were studied. One class took the drug N-acetylcysteine and the other class took a placebo. Then, the patients underwent
a double-blind smoking cessation treatment and the resting-state fMRI scans of their brains before and after treatment were
recorded. The scientific research goal of this study was to interpret the fMRI connectivity maps based on machine learning
algorithms to predict the patient who will relapse and the one who will not. In this regard, the feature matrix was extracted from
the image slices of brain employing voxel selection schemes and data reduction algorithms. Then, the feature matrix was fed into
the machine learning classifiers including optimized CART decision tree and Naive-Bayes classifier with standard and optimized
implementation employing 10-fold cross-validation. Out of all the data reduction techniques and the machine learning algorithms
employed, the best accuracy was obtained using the singular value decomposition along with the optimized Naive-Bayes classifier.
This gave an accuracy of 93% with sensitivity-specificity of 99% which suggests that the relapse in nicotine-dependent patients can
be predicted based on the resting-state fMRI images. The use of these approaches may result in clinical applications in the future.

1. Introduction

Smoking cigarettes is the leading cause of preventable mor-
tality in the United States, with around 50% of lifelong
smokers dying from illnesses such as heart disease, stroke,
and cancer [1]. In addition to this, insomnia, tremors and
quivering, lightheadedness, high blood pressure, heart attack,
and decreasing bone density are just a few symptoms that
nicotine could cause. Nicotine has been shown to have
addictive potential [2, 3]. Moreover, nicotine has been shown
to activate the mesolimbic dopamine system, specifically,
the ventral tegmental area, which reinforces the effects of

nicotine [4]. Developing a cessation treatment with a com-
pound that will reduce a patient’s dependence on nicotine, as
well as the effects of withdrawal, could helpmillions of people
[5]. One of these new, potentially effective compounds is N-
acetylcysteine (NAC) [6]. NAC (C5H9NO3S, mw: 163.19)
is a derivative of the amino acid cysteine prodrug which
is approved as a mucolytic agent and an acetaminophen
antidote. NAC restores the basal level of glutamate in the
accumbens which may reduce the drug seeking behavior [7].

In a pilot study, a trendwas observed for fewerwithdrawal
symptoms after smoking cessation for subjects taking NAC
versus subjects taking the placebo [8]. The goal of this
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paper is to show that NAC affects brain functions related
to addiction. NAC has been shown to normalize glutamate
levels in cocaine-dependent patients [6], which indicates that
it could also affect smoking behavior by changing glutamate
levels. Although there have been negative trials of NAC on
cessation of cocaine use in cocaine dependence, some trials
do show that in subjects who were already abstinent at the
start of the trial, NAC may be useful in reducing relapse
in these subjects [7, 9, 10]. Functional magnetic resonance
imaging (fMRI) is a noninvasive technique used for func-
tional brain mapping [11, 12]. Interpreting fMRI connectivity
maps based on machine learning algorithms represents an
important step towards a computational classification model
[13–15]. Employing machine learning algorithms and statis-
tical inference methods are commonly used to implement
computational models to find relations between fMRI data
and related tasks. Machine learningmay also result in clinical
applications in the future. For instance, in mental health
disorders, no clinical factors are known that can predict
whether patients will respond to a specific treatment. Being
able to identify which patients will respond to a treatment,
using baseline neuroimaging data, could result in improved
treatment outcomes, for instance, by early identification
through fMRI. Thus, personalized medicine could in the
future result in targeted interventions [16–20].

Previously, Smitha et al. [21] have investigated the func-
tional connectivity applied to region of interests (ROIs)
extracted by Brodmann template using CONN toolbox. The
classification accuracy was less than 50% using linear support
vector machines (Linear SVM). Since Linear SVM results
in low accuracy, it is important to employ new methods
for extracting ROIs and multivariate machine learning algo-
rithms for classifications. In addition, the use of decision
trees results in even lower accuracy [22]. Moreover, the suit-
ability of the random subspace ensemble method for fMRI
classification has been investigated [23]. It has previously
been shown that decision trees were successfully used for
variable selection and classification in fMRI brain activities
[24–27].

The aimof this studywas to be able to develop away to use
fMRI data to predict which patients will relapse and which
will not.This classification is normally done after 6months of
treatment or 12 months past the start of addiction treatment
[28, 29]. It is based on self-reports by the addicted persons.
When it is possible to classify responders toNAC and placebo
based on the fMRI data using machine learning algorithms,
there would be a tool which could be used in a future sample,
to predict who will relapse after a mixed intervention and
who needs additional treatment when trying to stop. This
would be useful in clinical practice to make earlier decisions
about when to start NAC treatment (based on their fMRI
classification): at the start of treatment, instead of having to
wait for 6 or 12 months to see whether NAC has effects.

In this study, four different machine learning classifiers
along with features based on high activity areas in the
brain extracted by a novel scheme for voxel selection were
employed. Areas of high activity are defined to be thosewhere
more oxygen-rich blood is flowing and fMRI is able to map
these areas. In addition to this, the accuracy of classification

will rely heavily on how the data is reduced. Thus, three dif-
ferent data reduction techniques were employed to perform
this study. Tahmassebi et al. [30] have recently shown that
10 components could be employed as the optimal number of
features extracted using their novel voxel selection scheme
in the fMRI smoking cessation study. First, validation of
the voxel selection schemes as well as the machine learning
classifiers is required. Therefore, the extracted features from
fMRI brain scans were employed to predict who received
the drug NAC and who received a placebo. Although, this
predictionwill not have any clinical utility, it would guarantee
that the machine learning models are valid and ready to be
applied for prediction relapse versus nonrelapse.

2. Data Acquisition

The main goal of this study was to determine whether
or not the drug N-acetylcysteine (NAC) would decrease
nicotine dependency. NAC may have an effect on relapse in
smoking cessation [8, 31]. In this regard, 39 regular smokers
participated in this treatment study at the Spinoza Center
of the University of Amsterdam. 19 heavy smokers who
wanted to quit took the drug NAC (class 1) and the other 20
subjects took a placebo (class 0) for two weeks. Anatomical
and functional scans of their brains were taken at baseline
and after two weeks of NAC treatment. Then, the relapse
data were assessed at six months after NAC treatment [32].
The Spinoza Center of University of Amsterdam is equipped
with a 3.0T Intera MRI scanner (Philips Health care, Best,
The Netherlands) with a 32-channel SENSE head coil to
obtain MRI data. The subjects were asked to keep their eyes
closed, stay relaxed, and stay awake during the scan (resting
state). Two hundred 3-dimensional functional images of the
subjects’ brains of size 80× 80× 37with a voxel size of 3mm3
with 2.3 seconds as repetition time were taken due to the
sensitivity to blood oxygen level-dependent (BOLD) contrast
by the gradient-echo planar sequence. In addition to this, the
3-dimensional anatomical data of size 240 × 240 × 220 with
a voxel size of 1mm3 have been acquired. Figure 1 shows
slices of the brain from one patient in all three axes for both
the anatomical (Figure 1(a)) and the functional (Figure 1(b))
representations.

Magnetic fields of the nuclei in oxygen-rich blood are
flipped due to the combination of a strong magnetic field
and radio waves. This produces a detailed map of the regions
where the ratio of flow of oxygen-rich blood to the brain
is high which explains the high activity areas of the brain.
This is called BOLD signal which is also studied in this
paper.The BOLD signal is generally modeled as the convolu-
tion of the stimulus function with Hemodynamic Response
Function (HRF) [33–36]. The energy due to an influx of
oxygenated blood to a local area of neuronal activity produces
the BOLD signal. Oxygenated hemoglobin has a diamag-
netic effect. However, hemoglobin would show paramagnetic
characteristics once it is deoxygenated. The MRI machine
produces amagnetic fieldwhich aligns the randomly oriented
atomic nuclei within the direction of the magnetic field
[21, 37].
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(a) Anatomical (b) Functional

Figure 1: Anatomical and functional slices of the brain.

3. Data Preprocessing

We were given the fMRI data in 4-dimensional spatiotempo-
ral NIFTI (Neuroimaging Informatics Technology Initiative)
format. The data contains subject-dependent artifacts due
to the long process of the scans, possible movements of the
subjects, and physiological noise [38].The fMRI data analysis
pipeline ismade using a combination of Statistical Parametric
Mapping (SPM12) and FMRIB Software Library (FSL) to
increase the BOLD contrast to noise ratio.

The preprocessing stage [39] includes the following. (1)
Motion correction to shift the voxels location which would
not match the anatomical location. 1% variation of the
signal due to the movement of the subject can be greater
than the BOLD signal which are extracted as features. (2)
Segmentation and realignment to correct in-plane rotations
and translations of the head within the image by selecting
the first image as the reference. (3) Temporal slice timing to
correct and shift in order the interleaved fashion slices. (4)
Smoothing to increase the signal-to-noise (SNR) ratio using
a general linear model along with a Gaussian to approximate
the haemodynamic response function (HRF) [40, 41]. (5)
Normalization using a Gaussian full width half maximum
(FWHM) kernel of 3mm for each voxel. (6) Coregistra-
tion to map functional information into anatomical space
using Talairach standard coordinates [42] and the Montreal
Neurological Institute (MNI) [43] brain templates. Figure 2
demonstrates the correlation matrix of raw (Figure 2(a))
and preprocessed (Figure 2(b)) data. It should be noted that
Figure 2 is reproduced from Tahmassebi et al. (2017) [44]
[under the Creative Commons Attribution License/public
domain].

To extract high activity features from the big data, a
novel voxel selection scheme (mask) [30, 45] was applied on
94,720,000 features of the preprocessed data for each subject.
Amask is a 3-dimensional array of 0 s and 1 s, where 1 signifies
keeping the voxel in that position and 0 indicates ignoring
the voxel in the data. This makes the problem more feasible
to feed the machine learning algorithms with 94,720 features
which has 0.1% share of the given big data.

4. Features Extraction

Dealing with a size of 39 × 94,720,000 as the feature matrix
with available computational equipment would be compu-
tationally expensive and inaccurate. After applying voxel
selection scheme, the size of the feature matrix was reduced
to 39 × 94,720, which is still a large number for a feature
vector for classification. Here, three robust algorithms were
employed for data reduction to find the feature matrix.

4.1. Independent Component Analysis (ICA). ICA [46] is a
technique to separate a multivariate signal into multiple
independent non-Gaussian signals. It extracts the hidden
spatiotemporal structure in neuroimaging. Maximum inde-
pendence of underlying signals is the essential assumption
of ICA. In principle, independence of two random variables
would lead to uncorrelation between variables [47]. ICA
demixes the recorded brain signals at each voxel and extracts
the relevant components along with the artifacts [48]. There
are some algorithms such as infomax, JADE, and FastICA
to employ this approach [49]. In this paper, the FastICA
algorithm was used. The FastICA is a hierarchical and sym-
metric approachwhichminimizes themutual information by
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Figure 2: Raw and preprocessed fMRI data.

employing non-Gaussianity and measurement of negentropy
[48]. ICA tries to extract a feature matrix like 𝑈 from the
full rank matrix 𝐴. With having 𝑁 patients and 𝑀 features
for each patient, the feature matrix size would be [𝐴]𝑁×𝑀. It
is desired to find a good approximation with respect to the
source, 𝑊, which is an unmixing matrix providing a linear
decomposition of 𝐴. Thus, for extracting 𝑞 features out of𝑀
features, we have

[𝑈]𝑁×𝑞 = [𝐴]𝑁×𝑀 [𝑊]𝑀×𝑞 . (1)

Feeding vector [𝑈]39×10 into various classifiers would be
the next level. We hope that ICA will tell us what regions of
the brain share similar brain activities.

4.2. Principal Component Analysis (PCA). PCA transforms
features of the original input data orthogonally to a new space
to reduce redundancy and reach high information density.
These variables in the new space are principal components
which are linearly uncorrelated. PCA is also referred to as
Karhunen-Loeve transformation or the Hotelling transform
[50]. PCA normalizes the input data within the unit interval
and chosen based variance. It was shown that better dis-
criminatory results were found by choosing a larger variance.
The first principal component has the largest variance within
the data set and the last one has the smallest variance.
Orthogonality of all principal components to each other gives
us an orthogonal basis set. Let𝑅 be the correlationmatrix and
𝜆𝑖 the corresponding 𝑖th eigenvalue of thematrix𝑅 and𝑄 the
eigenvectormatrix with 𝑞𝑖 columns. It should be noted that𝑄
is an orthogonal matrix (𝑄𝑇𝑄 = 𝐼). By spectral theorem we
have

[𝑅]𝑚×𝑚 = [𝐴]𝑚×𝑛 [𝐴𝑇]𝑛×𝑚 =
𝑚

∑
𝑖=1

𝜆𝑖𝑞𝑖𝑞𝑇𝑖 . (2)

We could create a new basis by choosing eigenvectors 𝑞𝑖
to rewrite the original data again using 𝐶 as the coefficient
vector, which is the projection of 𝐴 onto the principal
directions:

𝐴 =
𝑚

∑
𝑖=1

𝑞𝑖𝑐𝑖 = 𝑄𝐶 = 𝑄𝑄𝑇𝐴. (3)

To demonstrate the importance of PCA, which is reduc-
ing the dimension of the data, we could have a rank 𝑘
approximation 𝐴𝑟 of the original data:

𝐴𝑟 =
𝑘

∑
𝑖=1

𝑞𝑖𝑐𝑖 = 𝑄𝑟𝑄𝑇𝑟𝐴. (4)

Employing all the above-mentioned equations leads us to
a strategy such as subspace decomposition to find the largest
eigenvalue and project the original data orthogonally onto its
subspace. Thus, the eigenvalues closer to zero which contain
the redundant information will be discarded [50].

4.3. Singular Value Decomposition (SVD). SVD is the factor-
ization of matrix [𝐴]𝑚×𝑛 to the form 𝑈Σ𝑉𝑇, where 𝑈 is an
𝑚 × 𝑚 unitary matrix, Σ is an 𝑚 × 𝑛 diagonal matrix, and
𝑉 is an 𝑛 × 𝑛 unitary matrix. The diagonal values of Σ are
the singular values of the original matrix and the columns of
𝑈 and 𝑉 are the left and right singular values of the original
matrix, respectively. In this paper, the diagonals of the matrix
Σ are used since this tells us the properties of the matrix. It
can be used to compare with the other matrices and reduces
the dimension of the matrix

[𝐴]𝑚×𝑛 = [𝑈]𝑚×𝑚 [Σ]𝑚×𝑛 [𝑉]𝑇𝑛×𝑛 . (5)

The performance of different data reduction algorithms
with different numbers of components has been previously
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Figure 3: Illustration of correlation matrices with 10 components for ICA, PCA, and SVD data reduction techniques.

investigated, which suggests that 10 components would be
ideal for this analysis [30, 44, 51]. Figure 3 depicts the
correlation matrices produced by getting the correlation of
the independent components (Figure 3(a)), principal compo-
nents (Figure 3(b)) and singular values (Figure 3(c)).

5. Classification

There are two classification strategies for medical images. For
the first strategy, measurements of a set of features from a
region in an image would be employed as the feature vector.
This is called region-based classification. For the second
strategy, voxel-based classification is used, where contextual
or noncontextual information about every single voxel is

used as feature vector to feed into the classifier [50]. In this
paper, multivariate voxel-based analyses along with various
classifiers such as decision tree and Gaussian Naive-Bayes
with two implementations were employed [52].

5.1. Decision Tree Algorithm. Decision tree is a machine
learning algorithm which partitions a set of input data
recursively. A decision tree structure is made of a root node,
which has no incoming edges and zero or more outgoing
edges, internal nodes, each of which has one incoming edge
and more outgoing, and leaf nodes, each of which has one
incoming and no outgoing edges [53]. Based on the volume
of the data and available memory resources, decision tree
algorithms can be implemented in a serial fashion such as
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CART (classification and regression tree) [54], C4.5 [55],
and IDE3 (iterative dichotomizer 3) [56, 57] or parallel
fashion such as SLIQ (supervised learning in ques) [58] and
SPRINT (scalable parallelizable induction of decision trees)
[59]. Dealing with a feature matrix of size 39 × 10 after data
reduction and voxel selection schememotivates us to employ
a serial algorithm to implement the decision tree. In addition
to this, decision trees are easy to interpret by Boolean logic
and can also be visualized.

5.1.1. CART. The CART, by Breiman et al. [54], builds both
classification and regression trees based on binary splitting of
the features selected based on Langs et al. [60] index splitting
measure. In principle, it follows Hunt et al.’s algorithm [61].
It yields the largest information gain at each node. For a
given training data set𝑋 and label vector 𝑌, CART partitions
the space recursively such that the matched instances and
labels are clustered together [62]. For the 𝐷 amount of
data at node 𝑘, CART partitions the data into 𝐷Left and
𝐷Right subsets based on the splitting threshold and feature.
The impurity at node 𝑘 is calculated through the impurity
measure Gini as ∑𝑖 𝑝𝑘𝑖(1 − 𝑝𝑘𝑖) with 𝑝𝑘𝑖 as the proportion
of class 𝑖 observations in node 𝑘 [62]. For a data set of size
{𝑁 samples × 𝑀 features}, the run time cost order to build
the tree is O(NM log(N)) and the query time is 𝑂(log(𝑁)).

Based on the CART algorithm of how to build trees, if
the splitting process continues to the point that there are
few samples in each leaf of the tree, it is likely to overfit the
data. On the other hand, a small tree also might not capture
the important structural information about the sample space.
This problem is known as the horizon effect. Therefore, the
complexity of the tree in such a way that the estimated true
error is low is desired. In this regard, a reduced error pruning
algorithm, which is a bottom-up fashion pruning method,
was employed. This improves predictive accuracy by starting
at the leaves and replacing each node with its most popular
class to reduce overfitting and increase the simplicity of the
tree and speed of the process.This process continues until the
prediction accuracy is not affected.The optimization part was
repeated 51 times for each of the data reduction methods to
reach the most efficient result.

5.2. Naive-Bayes Algorithm. Naive-Bayes is a classification
technique based on Bayes Theorem with an assumption
of independence among predictors to model probabilistic
relationships between the feature matrix and the class labels
[53]. In simple terms, a Naive-Bayes classifier assumes that
the presence of a particular feature in a class is unrelated to
the presence of any other feature. Bayes Theorem combines
prior knowledge of the classes with new evidence gathered
from training data [53]. First, the Naive-Bayes model builds
the frequency table of the training data set. Then, it creates
the likelihood table by calculating the probabilities. Finally,
it calculates the posterior probability for each class and the
class with maximum posterior probability is the result of the
prediction. Naive-Bayes classifier is easy to implement, useful
for big data problems, and known to outperform even highly
sophisticated classifiers. In this paper, a standard algorithm

for Gaussian Naive-Bayes and an optimized version of Naive-
Bayes were employed.

5.2.1. Gaussian Naive-Bayes (GNB). The essential principle
in Bayes method is assuming a known a priori and then
minimization of the classification error probability, respec-
tively.The class-conditional density function could be known
or estimated from the available training dataset. During
Bayesian estimation, the training set conditioned density
function is getting updated by the training set which acts
as observations to allow the conversion of the a priori
information into an a posteriori density [50].

A simple introduction can be given by considering two
pattern classes: (1) NAC and (2) Placebo. To make the
mathematical notations easier, we call them 𝑤1 and 𝑤2,
respectively. Recalling the Bayes rule, we have

𝑃 (𝑤𝑖 | 𝑥) = 𝑝 (𝑥 | 𝑤𝑖) 𝑃 (𝑥𝑖)
∑2𝑖=1 𝑝 (𝑥 | 𝑤𝑖) 𝑃 (𝑤𝑖)

. (6)

For the two-class patterns 𝑤1 and 𝑤2, we have two Bayes
classification rules as follows:

If 𝑃 (𝑤1 | 𝑥) > 𝑃 (𝑤2 | 𝑥) , 𝑥 is assigned to 𝑤1,
If 𝑃 (𝑤1 | 𝑥) < 𝑃 (𝑤2 | 𝑥) , 𝑥 is assigned to 𝑤2.

(7)

Considering the Gaussian probability distribution func-
tion with 𝜇𝑖 as the mean value and Σ𝑖 as the covariance
matrix for discriminant functions makes it more feasible to
be solved.
𝑝 (𝑥 | 𝑤𝑖)

= 1
(2𝜋)𝑛/2 Σ𝑖1/2

exp(−12 (𝑥 − 𝜇𝑖)
𝑇 Σ−1𝑖 (𝑥 − 𝜇𝑖))

𝑖 = 1, 2.

(8)

By choosing a monotonic logarithmic discriminant func-
tion we have

𝑔𝑖 (𝑥) = −12 (𝑥 − 𝜇𝑖)
𝑇 Σ−1𝑖 (𝑥 − 𝜇𝑖) + ln𝑃 (𝑤𝑖)

− 𝑛
2 ln 2𝜋 − 1

2 ln Σ𝑖 𝑖 = 1, 2.
(9)

Now, by calculating the mean vector and covariance
matrices of the discriminant function for each class from the
training data, the data can be separated by a hyperplane (if
they have an equal covariance matrix) or hyperquadrics (if
they have an unequal covariance matrix).

5.2.2. Optimized Naive-Bayes (ONB). To optimize the Naive-
Bayes standard algorithm, the bag-of-token model was
employed [63]. In this way, the value of each feature 𝑘 is
calculated based on the nonnegative number of occurrences
of token 𝑘 in the observation. For estimated probability we
have

𝑝 (token = 𝑘 | class = 𝑙) = 1 + 𝛽1
𝑁 + 𝛽2 , (10)
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Table 1: Statistics of 51 runs of the reduced error pruning of the CART with 10-fold cross-validation with ICA, PCA, and SVD data reduction
algorithms.

Algorithm Type of tree Min Mean Median Max STD

ICA Original tree 0.435 0.435 0.435 0.435 0.0
Pruned tree 0.307 0.472 0.487 0.487 0.035

PCA Original tree 0.794 0.794 0.794 0.794 0.0
Pruned tree 0.358 0.484 0.487 0.487 0.017

SVD Original tree 0.615 0.615 0.615 0.615 0.0
Pruned tree 0.410 0.482 0.487 0.487 0.018

where 𝛽1 is the weighted number of occurrences of token 𝑘
in class 𝑙, 𝛽2 is the total weighted number of occurrences of
all tokens in class 𝑙, and 𝑁 is the number of instances in the
training set. Then, the classifier predicts the class label for
each observation based on the estimated posterior probability
presented in (10). In this way, each observation is assigned to
the class with the maximum posterior probability [64].

As discussed, the participants were indeed randomized
at the first session to receive NAC or placebo. In addition to
this, we first learned the two classes (relapse versus nonre-
lapse) and then tested them in a randomized way choosing
randomly participants from the two groups. Moreover, due
to the low numbers of participants, 𝑘-fold cross-validation
was used to overcomeoverfitting. In principle, in an overfitted
model, the underlying relationships of the entire database are
not learned, which might give falsified information about the
process. In this paper, 10-fold cross-validation was used to
test the accuracy of the classification. In this procedure, our
testing set is provided by leaving 4 subjects out of the data
set and the training set is provided by aggregating the other
9 folds (35 subjects) to use in the predictive process. Each
classifier’s discriminant function was fitted on the training
data set for each fold.This was done 10 times in order to cover
all the subjects in the testing set. The classification accuracy
in each fold is the number of times that the model predicted
correctly divided by the number of subjects in the testing
fold, (4).The total classification accuracy is the average of the
classification accuracies in all 10-folds.

6. Results and Discussion

Two classification tasks with three major data reduction
methods, ICA, PCA, and SVD, were developed in Python
[62, 65] and MATLAB [64]. Based on the previous studies
using this database, the data reduction was done by keeping
10 components [30, 44, 51]. The classification tasks were
done in two different phases: (1) validation and (2) relapse.
For the model validation as discussed in Section 6.1, the
classification was done based on two classes NAC (class 1)
and placebo (class 0). This will not have any clinical benefits,
but it would guarantee that the voxel selection schemes which
were employed to extract features from fMRI brain scans
were valid. In addition to this, due to the equal number of
subjects for each class (19 NAC, 20 placebo), the classification
task is unbiased. This would present the performance of
the proposed model without overfitting. Next, classification

was done to separate subjects into two groups of subjects
(relapse (class 0) and nonrelapse (class 1)). In this case, class
labels were made based on the number of cigarettes that each
subject smoked after the treatment for six month. In this
paper, people who smoked less than 10 cigarettes during the
six months past the treatment were chosen for nonrelapse
class (13 subjects) and the rest of the subjects were assigned
to the relapse class (26 subjects). In this section, the results
regarding the classification tasks for themodel validation and
the relapse are presented and discussed.

6.1. Validation. As discussed, the pruning process of the cart
using the reduced error pruning algorithm was repeated 51
times per data reduction algorithm. Table 1 presents the
statistical parameters of the pruning process. In addition to
this, the optimization process of the CART misclassification
error is shown in Figure 4 for different numbers of terminal
nodes. For each of the reduction techniques, cross-validation
(solid purple line) and resubstitution (dashed pink line) were
done and the best choice (magenta circle) based on the cross-
validation accuracy was reported. It is preferred to use a
simpler tree if it is roughly as good as a more complex tree
according to Occam’s Razor Principle. Therefore, a cut-off
value equal to the minimum cost plus one standard error
(dotted black line) was employed.

For the learning phase as Figures 4(a), 4(b), and 4(c)
picture, the resubstitution error decreased as the number
of terminal nodes increased. It is assured that the classifier
can predict the training dataset very well. The most complex
tree was made by SVD with 7 terminal nodes. This pattern
normally was expected to be repeated.However, for the cross-
validation error in Figure 4(c) until the second terminal
nodes of the tree, the classifier did not predict the testing
samples very well. This might be the reason why the model
finished with 7 terminal modes. The lowest misclassification
error for 10-fold cross-validationwas presented in Figure 4(a)
and also in Table 1 with 0.307 for ICA.

To summarize the number of samples predicted correctly
(true positive (TP) for positive class, and true negative (TN)
for negative class) and incorrectly (false positive (FP) for
positive class and false negative (FN) for negative class) they
were calculated as a confusion matrix [53]. The fraction of
positive instances predicted correctly defines true positive
rate (TPR) or sensitivity. In addition to this, true negative rate
or specificity is defined as the fraction of correct prediction of
negative instances. Figure 5 shows the confusion matrices of
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Figure 4: Misclassification error for the CART for different numbers of terminal nodes with ICA, PCA, and SVD data reduction techniques.

classification using the CART with different data reduction
methods.

As shown in Figure 5, the rows of the confusion matrix
plot correspond to the predicted class (Output Class), and
the true class (Target Class) is shown as the columns of the
confusion matrix plot. In addition to this, the prediction
accuracy of the classes of observations by the trained classifier
is depicted on the diagonal cells while the off diagonal cells
depict where the classifier failed at predictions of the classes
of observations.The column on the far right of the plot shows
the accuracy for each predicted class, while the row at the
bottom of the plot shows the accuracy for each true class.The
overall accuracy is shown in the bottom right cell of the plot
[64].

As seen in Figure 5, the best classification accuracy
was reported for SVD (Figure 5(c)). ICA and SVD feature
extraction schemes performed well on placebo predictions
since the CART predicted all the 20 subjects in placebo class
correctly (51.3%). Employing SVD along with the CART, out
of 23 placebo predictions, 87.0%were correct and 13.0%were

incorrect. Out of 16NACpredictions, 100%were correct, and
out of 20 subjects in the placebo class, 100% were correctly
predicted as placebo with zero error. Out of the 19 subjects
in the NAC class, 78.9%were correctly classified as NAC and
21.1% were classified as placebo. Overall, 92.3% of the pre-
dictions were correct and 7.7% were incorrect classifications
based on the cross-validation. The overall accuracy for ICA
and PCA was 89.7% and 84.6%, respectively. It should also
be noted that the model with SVD being more complex was
already discussed. This complexity becomes more clear in
Figure 6(c). As we compare the tree evolution of the models,
it can be seen that the ICA model can improve with reduced
complexity and high accuracy. Moreover, the contour plots
of the probability surface for classification using the CART
were presented in Figure 7. In a statistical-classification, a
decision boundary or decision surface is a hypersurface that
partitions the underlying feature space into two sets, one
for each class. The classifier classifies all the points on one
side of the decision boundary as belonging to one class and
all those on the other side as belonging to the other class.
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Figure 5: Confusion matrices of classification using CART for ICA, PCA, and SVD data reduction techniques.

Decision boundaries are not always clear-cut. In fact, they are
the transition from one class in the feature space to another,
which is not discontinuous, but gradual. In this plot, red
color was chosen to demonstrate the highest probability and
blue color represents the lowest probability as well. The black
scatter points are the samples predicted by the classifier for
each class. It can be seen that it is less probable to predict a
subject in the surface area with blue color.

In classification with GNB, as shown in Figure 8, the
confusion matrices contain high values for FP, which means
the classifier failed at the prediction of the subjects in the class
NAC. The low specificity can be seen clearly in Figure 8(b)
where the GNB just predicted 4 subjects in the NAC class
and did not detect the other 15 subjects in that class. That
is the reason FP is 38.5%, which is relatively high for any
classification task. Furthermore, this can also be seen clearly
in Figure 9, where scatter black points can be found in blue

parts of the surface areas, specifically for class 1 prediction.
This matches the previous results with confusion matrices
and confirms that, overall, the GNB classifier could not
predict the subjects in the NAC class for different feature
matrices based on ICA, PCA, and SVD very well. This is
more obvious in Figure 9 where the classifier has predicted
the subjects in the NAC class with 30% probability and the
subjects in the placebo class with a probability of more than
90%. Results in Figure 9 confirm the accuracies presented in
Figure 8.

Similar to the pruning process of the CART, the ONB
algorithm ran for 51 times as well, and the results are
presented in Table 2. The performance of the optimization
algorithm is obvious by comparing the confusion matrices
in Figures 8 and 11. For example, the accuracy for GNB with
ICA is improved by 30%.More importantly, the optimization
algorithm improved the strength of the classifier in prediction
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Table 2: Statistics of 51 runs of the optimized and Gaussian Naive-Bayes classifier with 10-fold cross-validation for ICA, PCA, and SVD data
reduction algorithms.

Algorithm GNB ONB
Total Min Mean Median Max STD

ICA 0.564 0.358 0.411 0.384 0.538 0.053
PCA 0.615 0.333 0.498 0.487 0.666 0.058
SVD 0.615 0.384 0.495 0.487 0.666 0.039

X4 ≥ −0.144

X8 ≥ −0.08165

X7 ≥ 0.05695

0

0

0

0

0 1

TrueFalse

TrueFalse

TrueFalse

TrueFalse

TrueFalse

X10 ≥ 0.02905

X10 ≥ −0.1265

(a) ICA

X5 ≥ −6295

X2 ≥ 330

X7 ≥ 4100

0

0

True

True

True

False

False

False

1

1

(b) PCA

X9 ≥ 14600

X3 ≥ 23700

0

0

00

TrueTrueTrue

True

True

True

False

False

False

False

FalseFalse

111

X2 ≥ −4580

X9 < −2160

X6 < 11330

X3 < 10395

(c) SVD

Figure 6: Illustration of tree evolution for the CART for ICA, PCA, and SVD data reduction techniques.
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Figure 7: Contour plots of probability surface for classification using the CART for ICA, PCA, and SVD data reduction techniques.

of the subjects in the NAC class. As shown in Figure 8(a),
GNB predicted 9, 4, and 5 subjects in the NAC class for
ICA, PCA, and SVD algorithms, respectively. On the other
hand, the correct number of predictions for the NAC class
was almost doubled as shown in Figure 11(a). The best result,
as presented in Table 2, was achieved using ICA. This is
better depicted in Figure 10, which pictures the convergence
of the minimum estimated and observed cross-validation
error. As seen, the estimated errormatches the observed error
with ICA. On the other hand, the estimated error started
fluctuating after 80 function evaluations for PCA and SVD.

To display the trade-off between sensitivity and specificity
of the classifiers, Receiver Operating Curves (ROC) have
been employed [53]. The closer the curve follows the left-
hand border and the top border of the ROC space, the
more accurate the test. The closer the curve comes to the
45-degree diagonal of the ROC space, the less accurate the
test. The ROC curve visualizes the detection performance
of the classifier based on TPR and FPR. As the number
of features increases, the classifier’s performance increases
until we reach the optimal number of features due to the
curse of dimensionality. Here, 10 components were chosen
as the optimal number. It should be taken into account that
increasing the number of features decreases the performance
of the classifier. The area under the ROC curve (AUC) for

each data reduction method was also calculated. An AUC of
1.0 confirms the ideal performance of the classifier and an
AUC of 0.5 confirms that the performance of the classifier is
not acceptable.

Figure 12 shows the ROC curves for the CART, the
GNB, and the ONB classifiers with the three feature selection
schemes: ICA, PCA, and SVD, respectively.The performance
of the ICA as the feature selection scheme along with the
ONB with an AUC of 0.99 and the CART with an AUC of
0.95 as classifiers is the best. Moreover, the CART classifier
shows an acceptable performance alongwith all the employed
data reduction algorithms. This gives the conclusion that the
ICA extracted structural information to be classified by the
CART.

6.2. Relapse. Next, the validatedmodel (previously presented
in Section 6.1) was employed to predict relapse in nicotine-
dependent subjects. Similarly, the CART model underwent
an optimization procedure using the reduced error pruning
algorithm using 10-fold cross-validation with 51 runs to
achieve the best estimation of the error. Table 3 presents the
statistical parameters of the estimated error of the CART. As
seen, both errors for the original tree and the pruned tree are
presented and the best estimated error was achieved using
PCA as the feature extraction scheme.
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Table 3: Statistics of 51 runs of the reduced error pruning of the CARTwith 10-fold cross-validation with ICA, PCA, and SVD data reduction
algorithms.

Algorithm Type of tree Min Mean Median Max STD

ICA Original tree 0.512 0.512 0.512 0.512 0.0
Pruned tree 0.333 0.333 0.333 0.333 0.0

PCA Original tree 0.410 0.410 0.410 0.410 0.0
Pruned tree 0.256 0.330 0.333 0.333 0.012

SVD Original tree 0.512 0.512 0.512 0.512 0.0
Pruned tree 0.307 0.332 0.333 0.333 0.003
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Figure 8: Confusion matrices of classification using the Gaussian Naive-Bayes for ICA, PCA, and SVD data reduction techniques.

Figure 13 demonstrates the bias-variance trade-off phe-
nomenon [66]. The resubstitution error is the training error
of the built tree for prediction of the subjects in terms of
relapse and nonrelapse. As shown, the substitution error
decreased through the number of terminal nodes for each
of the employed data reduction algorithms. The tree was

made using 4, 5, and 7 terminal nodes for ICA, PCA, and
SVD, respectively. Based on Table 3 and Figure 13(b), it can
be concluded that the PCA algorithm along with the CART
showed the best performance. The cross-validation estimate
of the true error rate decreases as we increase the number of
terminal nodes.
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Figure 9: Contour plots of probability surface for classification using the Gaussian Naive-Bayes for ICA, PCA, and SVD data reduction
techniques.

As shown in Figure 4(a), the cross-validation error rate
started increasing right after the first terminal node. The
dotted black line is the minimum error plus one standard
deviation of the training error was defined as a metric. In this
regard, the desired estimated error rate using cross-validation
has to be below this line. As shown, the PCA has the largest
margin with the defined metric line and the lowest error
rate with 0.256 with respect to ICA and SVD data reduction
algorithms.

This result matches the confusion matrices presented in
Figure 14. As previously discussed, it is desired to predict
the relapse of the subjects in the class 1. However, based on
the confusion matrices, the accuracy of 74.4% was achieved,
but the CART classifier did not predict the subjects in the
nonrelapse class very well. Only 3 out of 13 subjects in the
nonrelapse class were predicted by the CART along with
the PCA feature extraction scheme. This is also shown in
Figure 15(c), where the subjects in the class 1 (nonrelapse)
were technically predicted on the edge of the probability
surfaces and closer to 0 (blue color). This might be due to
the nature of the decision trees which are usually suitable for
balanced binary-class problems [53].

Alternatively, theNaive-Bayes classifier based on its prob-
abilistic nature solves the prediction classification problems
implicitly.This would be an alternative to predict the subjects
in the nonrelapse class better. Table 4 illustrates the statistical
parameters of the estimated true error rate using 10-fold
cross-validation after 51 runs for optimized Naive-Bayes
classifier.

As presented, the best error was achieved along with the
SVDdata reduction techniquewith a cross-validation error of
0.410 with a prediction accuracy of 82.1% as depicted in Fig-
ure 16(c). Employing a probabilistic classifier while dealing
with a nonbalanced binary-class problem outperformed the
CART with an accuracy of 69.2% and 85.2% for prediction
of the nonrelapse and relapse class, respectively. This result is
clearly presented in Figure 17(b), where the GNB predicted 8
subjects out of 9 subjects in the class 1 as shown in the counter
plot with probability value of 1 (red color).

By optimizing the Naive-Bayes algorithm after 51 runs,
the classifier was able to predict the subjects in the nonrelapse
even better. As shown in Figure 18, the solid line is the
observed error rate and the dashed line is the cross-validation
estimate of the true error rate. After about 25 function
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Table 4: Statistics of 51 runs of the optimized and Gaussian Naive-Bayes classifier with 10-fold cross-validation for different data reduction
algorithms.

Algorithm GNB ONB
Total Min Mean Median Max STD

ICA 0.461 0.282 0.329 0.333 0.384 0.020
PCA 0.589 0.307 0.344 0.333 0.435 0.021
SVD 0.410 0.282 0.319 0.307 0.410 0.024
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Figure 10: Convergence rates of the optimized Naive-Bayes classifier for ICA, PCA, and SVD data reduction techniques.

evaluations for ICA, the estimated error rate did not match
the observed error rate. However, it reached the minimum
estimated error of 0.282 as presented in Table 4. On the
other hand, the estimate of the true rate exactly matched the
observed error rate employing SVD data reduction scheme
and reached the minimum of 0.282.

Both ICA and SVD algorithms reached the minimum
estimated error, but the overall prediction accuracy of SVD
was 13% better than ICA. It is true that the ICA reached
an estimated error better than PCA, but the ONB classifier
along with the PCA algorithm even predicted the subjects

with better accuracy. This could be due to the same nature
of the PCA and SVD as previously discussed in Section 4.
The ONB along with the ICA algorithm predicted all the
subjects in the relapse class correctly. However, it failed at the
prediction of 61.5% of the subjects in the nonrelapse class as
shown in Figure 19(a). In conclusion, ICA could not extract
enough structural information to be employed in prediction
of nonrelapse subjects for this study.

Figure 20 visualizes the performance of the classifiers
and the trade-off between sensitivity and specificity in which
any increase in sensitivity will be accompanied by a decrease
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Figure 11: Confusion matrices of classification using the optimized Naive-Bayes for ICA, PCA, and SVD data reduction techniques.
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Figure 12: Continued.
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Figure 12: ROC curves for classification using the CART, Gaussian, and optimized Naive-Bayes with ICA, PCA, and SVD data reduction
techniques.
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Figure 13: Misclassification error for the CART for different numbers of terminal nodes with ICA, PCA, and SVD data reduction techniques.
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Figure 14: Confusion matrices of classification using CART for ICA, PCA, and SVD data reduction techniques.
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Figure 15: Continued.
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Figure 15: Contour plots of probability surface for classification using the CART for ICA, PCA, and SVD data reduction techniques.
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Figure 16: Confusion matrices of classification using the Gaussian Naive-Bayes for ICA, PCA, and SVD data reduction techniques.
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techniques.
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Figure 18: Convergence rates of the optimized Naive-Bayes classifier for ICA, PCA, and SVD data reduction techniques.
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Figure 19: Confusion matrices of classification using the optimized Naive-Bayes for ICA, PCA, and SVD data reduction techniques.
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Figure 20: ROC curves for classification using the CART, Gaussian, and optimized Naive-Bayes with ICA, PCA, and SVD data reduction
techniques.

in specificity. As seen, the ONB classifier along with SVD
predicted the subjects in relapse and nonrelapse classes with
an AUC of 0.99, which is an extraordinary result. In addition
to this, PCA along with the ONB classifier also showed a
reasonable accuracy with an AUC of 0.97. This might be
due to the similar nature of the principal components and
singular values, which showed similar performance for this
database. As seen, the ONB classifier that did a phenomenal
job separating the relapse and nonrelapse classes has an
ROC curve that comes close to the upper left corner of
the plot. It should be noted that even ICA, along with
the ONB classifier, showed reasonable results in predicting
subjects in the relapse class. However, it seemed that ICA
could not extract structural features to detect the subjects
in the nonrelapse class. This might be the reason that the
FN values were high. This is so obvious by considering
ICA along with the CART classifier, where the line rep-
resents a classifier that did not do better than random
prediction.

7. Conclusions and Future Work

The scientific goal of this study was to develop new theory-
driven biomarkers by implementing and evaluating novel
techniques from resting-state brain scans that can be used in
relapse prediction for nicotine-dependent patients and future
treatment efficacy. Two classes of patients were studied, one
took the drug N-acetylcysteine and the other took a placebo.
The patients underwent a double-blind smoking cessation
treatment and the resting-state fMRI of their brains before
and after treatment was recorded. The high dimensionality
of the fMRI data taken from patients made it difficult for
the classification tasks to employ the original preprocessed
data as input. In this regard, data reduction algorithms
including ICA, PCA, and SVD were employed. The CART
decision tree and the Naive-Bayes classifier with two different
implementations were chosen for the classification tasks.
Based on the results, the following conclusions can be
drawn:
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(1) The proposed model, including the features extracted
from the resting-state fMRI brain scans, was validated
by classifying the subjects into NAC and placebo
classes. The optimized Naive-Bayes along with inde-
pendent component analysis gave an accuracy of
93% with sensitivity-specificity of 99% for the val-
idation set. The validated feature model based on
singular value decomposition along with optimized
Naive-Bayes classifier gave an accuracy of 93% with
sensitivity-specificity of 99% for the relapse set.

(2) The validation results indicated that independent
component analysis can be employed to extract struc-
tural information to be used in a balanced-unbiased
classification problem using both explicit and implicit
classification algorithms.

(3) The relapse results showed that singular value decom-
position would extract critical features to be used in
an unbalanced-biased classification problem employ-
ing implicit classification algorithms.

(4) The relapse results showed that interpreting fMRI
connectivity maps based on machine learning algo-
rithms might result in developing novel theory-
driven biomarkers with clinical applications in future.

(5) All the analysis was based on the difference between
baseline and follow up scans, which were acquired
in the resting-state. Thus, it can be assumed that
any difference between the groups is the result of
NAC, since this was the only variable that differed
between the groups. In addition to this, there were no
differences between the groups at baseline, except the
motivation to change their behavior.

In future work, deep learning and convolutional neural
networks (CNN) can be employed to maximize the infor-
mation for the training process. As discussed, the fMRI
data is given in 4-dimensional NIFTI format (three spatial
dimensions, one temporal dimension). In fact, a 3Dmovie for
each subject for 200 snapshots before and 200 snapshots after
the treatment is given. In this approach, the CNN model can
be trained employing different kernels, subsampling, max-
pooling, and padding, along with fully connected networks
to maximize the amount of meaningful information in the
training process. The trained model can be used in relapse
prediction based on fMRI scans without using any voxel
selection schemes.
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