
Chapter 9
Genetic Programming Based on Error
Decomposition: A Big Data Approach

Amirhessam Tahmassebi and Amir H. Gandomi

Abstract An investigation of the deviations of error and correlation for different
stages of the multi-stage genetic programming (MSGP) algorithm in multivariate
nonlinear problems is presented. The MSGP algorithm consists of two main stages:
(1) incorporating the individual effect of the predictor variables, (2) incorporating
the interactions among the predictor variables. The MSGP algorithm formulates
these two terms in an efficient procedure to optimize the error among the predicted
and the actual values. In addition to this, the proposed pipeline of the MSGP
algorithm is implemented with a combination of parallel processing algorithms to
run multiple jobs at the same time. To demonstrate the capabilities of the MSGP,
its performance is compared with standard GP in modeling a regression problem.
The results illustrate that the MSGP algorithm outperforms standard GP in terms of
accuracy, efficiency, and computational cost.

9.1 Introduction

We are entering the era of big data that refers to the explosion of available
information with new promising levels of scientific exploration. Despite the novel
opportunities that big data offers to recent society, it brings challenges including
computational cost, huge high-dimensional sample size, storage impasse, and error
extent. The rise of big data in various scientific fields such as genomics, economics,
finance, neuroscience, internet security, digital humanities, etc and their challenges
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demand new evolutionary computational paradigms to deal with salient features
of big data, including heterogeneity, noise accumulation, spurious correlation, and
incidental endogeneity [3]. Evolutionary algorithms have mostly been successful in
solving big data problems [9, 16, 21].

Genetic programming (GP) [12] is as an extension of genetic algorithms (GA)
which uses computer programs to solve problems. GP uses tree structures to
represent the solutions and evolves them during generations. Prediction of real
values based on each tree is the procedure by which GP performs regression
[4–6, 18]. In 1998, Ryan et al. [15] proposed a relatively novel evolutionary
computation method known as grammatical evolution (GE). GE provides a solution
by restricting the search space using domain knowledge according to a user-
specified grammar for evolving solutions. Due to the modular approach of GE, it
has been successfully applied to financial applications such as predicting corporate
bankruptcy, forecasting stock indices, and bond credit ratings. In addition to this,
Ferreira has previously proposed another promising variant of GP, known as gene
expression programming (GEP) to model nonlinear problems.

Besides the traditional tree-based GP, a linear variant of GP, know as LGP was
published in Brameier and Banzhaf in 2007 [1]. The standard GP model expresses
the functional programming language using tree structures in which inner nodes
hold functions and leaves are the location of input predictor values. On the other
hand, an evolutionary GP variant of a sequence of instructions from an imperative
programming language is the essential basis for LGP. The term “linear” refers to the
imperative program representation which does not mean that the method provides
linear solutions [1]. Furthermore, GP has a phenomenal ability in model selection
from a pool of a given population. Many of the GP-based models incorporate
all the predictor input values in the modeling phase. Gandomi and Alavi [4]
have previously proposed a novel scheme to formulate a problem using individual
predictor variables and the interactions among them.

Different genetic operators play an essential role in the evolution process. Iba
et al. [11] presented a novel method for GP, known as structured representation on
genetic algorithms for nonlinear function fitting (STROGANOFF) by recombining
standard GP with local hill-climbing. They have pointed out the critical changes in
the semantics due to mutation operators. To overcome these difficulties: (1) they
have tuned local parameters with the help of statistical identification techniques,
and (2) they have controlled tree growth in GP by setting the fitness score to a
minimum description length (MDL) measure. The authors validated their proposed
method by comparing STROGANOFF’s effectiveness in its application to symbolic
regression of nonlinear problems with numerical results. Moreover, the complexity
measure can be improved by tweaking the fitness function through evolution. For
example, Zhang et al. [22] analyzed fitness functions on error landscapes and the
complexity measures by benchmarking the importance of tree representations of GP
models via a Bayesian framework. This flexibility helped to investigate the solutions
to programs which might end with bloat phenomenon. In addition to this, Zhang
et al. [22] improved the fitness score by balancing the complexity of the model
using an adaptive learning strategy. In this procedure, the parsimony coefficient was

atahmassebi@fsu.edu
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increased to reach better accuracy. The effectiveness of their method has been tested
on real-world medical diagnosis problems.

In addition to the reasonable performance of GP models in regression problems,
they have also shown great performance in classification problems in various
real-world and big data problems, including those in neuroscience and medical
imaging. Tahmassebi et al. [19] have employed several data reduction algorithms to
reduce the dimensionality of an fMRI big data classification problem. In particular,
the problem with high numbers of dimensions (∼240,000) was decomposed into
a new problem with feasible numbers of dimensions (<30) via data reduction
algorithms. Then, the decomposed data were used as input predictor variables for
the GP classifier. Tahmassebi et al. [20] have also shown the performance of GP in
classification for large numbers of generations (∼13,000) using high-performance
computing (HPC). This would suggest employing parallel algorithms for such
population-based evolutionary algorithms to overcome the curse of dimensionality.

In this study, we propose a GP-based scheme to decompose the error in a
multivariate nonlinear problem. We apply the MSGP method, previously proposed
by Gandomi and Alavi [4], in solving problems with N inputs in which N

1-dimensional programs were used instead of solving the problem with one N -
dimensional program. In particular, the MSGP method incorporates the individual
effect of each of the input predictor variables, and the interactions among them.
Additionally, it is presented that the interactions among the input predictor variables
can be neglected. This decreased the computational cost dramatically without losing
more than a negligible amount of accuracy. The performance of the MSGP method
is tested in a problem where the deviations of the error and correlation in each
stage of the MSGP method are investigated. This opens new approaches with less
computational cost and the same accuracy to tackle big data problems.

9.2 Computational Model

A multi stage evolutionary algorithm, called MSGP, is presented to decompose the
error through several steps. The MSGP algorithm is implemented in Python along
with GPlearn and Scikit-Learn [13] libraries. The model starts with generating
a population of tree-like programs to represent the data based on stochastic
formulations of variables. Just a subset of the generated programs compete with
each other based on the tournament size, and the winners are optimized recursively
through the evolutionary process based on the fitness metrics. Three different
options were set as fitness metrics: mean absolute error (MAE), mean squared error
(MSE), and root mean squared error (RMSE). Additionally, the code has the ability
of customizing the fitness metric by user-defined functions.

To find the best mathematical formulation and the fittest individual, different
genetic operators such as crossover, subtree mutation, hoist mutation, and point
mutation were employed in the GP model. To see the convergence during the evolu-
tionary process, the size of the programs was increased which is normally expected
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Table 9.1 Parameters setting
for the GP and MSGP
algorithms

Parameter Setting

Population size 300

Number of generations 100

Tournament size 20

Crossover probability 0.7

Subtree mutation probability 0.1

Hoist mutation probability 0.05

Point mutation probability 0.1

Point replace probability 0.05

Parsimony coefficient 0.001

Stopping criteria 0.0

Max samples 0.9

Random state 1367

Number of jobs 1

Loss metric MAE

Score metric R2

Function set +,−,×, /

to increase fitness values. Sometimes, this would never happen since it would cause
computational costs and would make the final programs less understandable, a
phenomenon called “bloat”. To control bloat, a parsimony coefficient was defined
for the GP model which made programs with lower values for the fitness metric
unavailable for the selection at each generation. The other alternative was generating
an offspring by applying the hoist mutation operator to insert a random subtree into
the original subtree location in the next generation [14]. The MSGP algorithm was
implemented in Python employing parallel algorithms to run multiple jobs at the
same time. By changing the number of jobs in the code, we could use the maximum
CPU cores available to decrease the computational runtime which would help to
solve a big data problem. The coefficient of determination (R2) was defined as the
output score for regression problems. Table 9.1 lists the parameter setting used in
the MSGP model. Figure 9.1 also presents a schematic tree structure of a program.
Most of the GP models discussed in Sect. 9.1 employed all the predictor variables
as inputs. This incorporation of all the variables might affect the decomposition cost
throughout the modeling process. To address these issues, an MSGP strategy was
proposed to model the predictor variables by taking into account the effect of each
of the individual predictor variables.

The MSGP algorithm could be divided into two phases:

1. Incorporating the individual effect of the predictor variables
(MSGPwo−int ).

2. Incorporating the interactions among the predictor variables (MSGPw−int ).
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Fig. 9.1 A schematic tree
representation of a GP model
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To shine some light on the details of the MSGP algorithm, it should be noted that
the final solution, f (X), entails the following terms:

f (X) = f1(x1)+f2(x2)+· · ·+fn(xn)+fint (X) =
n∑

i=1

fi(xi)+fint (X) (9.1)

where xi is the input variable, n is the number of input variables, fi(xi) indicates the
function based on only one input variable xi , and the interaction among the input
variables was defined by fint (X). It is always possible to formulate a set of variables
in terms of output values and a subset of the variables. Equation (9.2) presents the
formulation of a binary problem with two variables based on the values predicted
by the first input variable and the target output values:

f2(x2) = f (X) − f1(x1) (9.2)

In other words, Eq. (9.2) demonstrates that a new variable formulates the error
between the predicted and the actual values. This formulation is known as the
decomposition of errors. This procedure can be extended by repeating the formula-
tion presented in Eq. (9.2).

f3(x3) = f (X) − f1(x1) − f2(x2) (9.3)

...

fn(xn) = f (X)−f1(x1)−f2(x2)−· · ·−fn−1(xn−1) = f (X)−
n−1∑

i=1

fi(x1) (9.4)
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Algorithm 9.1 Multi-stage genetic programming (MSGP)

1 begin
2 Y = f (X) ;
3 for i = 1 : n (n is the number of input variables) do

Input : xi

Output: Y

4 Run GP for fi(Xi) ;
5 Generate Initial Population ;
6 Calculate Fitness of Population ;
7 if The Termination or Convergence Conditions are not satisfied then
8 Select Individuals based on Fitness;
9 Apply Genetic Operators: (Crossover, Mutation,. . . ) ;

10 Check the Fitness of Population ;
11 end
12 Y ← Y − fi(xi) ;
13 end

Input : X (x1, x2, . . . , xn)

Output: Y

14 Run GP for fint (X) ;
15 Generate Initial Population ;
16 Calculate Fitness of Population ;
17 if The Termination or Convergence Conditions are not satisfied then
18 Select Individuals based on Fitness;
19 Apply Genetic Operators:(Crossover, Mutation,. . . ) ;
20 Check the Fitness of Population ;
21 end
22 fMSGP (X) ← ∑n

j=1 fj (xj ) + fint (X) ;
23 end

Considering fint (X) presented in Eq. (9.1), the final solution calculated by the
MSGP algorithm can be presented as follows:

fMSGP (X) =
n∑

i=1

fi(x1) + fint (X) (9.5)

The pseudo code of the MSGP algorithm is presented in Algorithm 9.1.

9.3 Case Study

The database presented by Garzon-Roca et al. [10] was employed to compare
decomposition of errors using GP and MSGP methods. The database contains
experimental studies of compressive strength of masonry made of clay bricks and
cement mortars. The database consists of binary inputs: (1) mortar compressive
strength fm, and (2) brick compressive strength fb with output f (X) = f (x1, x2) =
f (fm, fb). Both the GP and the MSGP algorithms ran in Python [2, 13] for 100
generations and a population size of 300 to build regression models for the above-
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Fig. 9.2 The tree structure of the predicted solution using the GP model

mentioned database. Table 9.1 presents the details of the final parameter settings
which were selected on the basis of a trial and error approach and multiple runs for
the GP and MSGP algorithms. The tree structure of the resulting solution for GP is
presented in Fig. 9.2. It visually presents the relation between mortar compressive
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Fig. 9.3 The tree structures of the predicted solution using the MSGP model

strength (x1 = fm) and brick compressive strength (x2 = fb) to find the solution
(f (X) = f (x1, x2)) using the final GP model. Additionally, Fig. 9.3 illustrates the
tree structures of the solutions in the three stages of the final MSGP model.

9.4 Performance Analysis

As it is shown in Fig. 9.3, the decomposition of the errors in different stages of the
MSGP method can be discussed to find out the impact of each stage in terms of
error and their correlation with the outputs during the process. In this regards, the
MSGP method in three different stages was considered: (1) in the first stage only
the error between the actual and the predicted values based on the first variable (x1)
using GP program (f1) was considered. (2) In the second stage, the error between the
predicted values using the second input variable (x2) and the actual values subtracted
from the error calculated by (x1), and (3) as the last stage, the sum of the errors in
the first and the second stages in addition to the error calculated by the interaction
function (fint ) were considered. In the first 10 generations, f1 was calculated based
on x1, then from 10 to 15 generations f2 was calculated, and from generation 15 to
25 fint was used to calculate the error and R2 score. Figure 9.4 illustrates the stages
of calculating MAE through the generations. It is obvious that fint (X) in MSPG-
II stage has just increased the accuracy of the prediction of the output values for
a small amount which is infinitesimal with respect to its change in computational
cost. Additionally, Fig. 9.5 also presents the R2 score during the generations for the
both GP and MSGP in the different stages. This also proves the low impact of the
fint (X) in the MSGPw−int stage based on the statistical scores. More details of the
calculated statistical parameters were presented in Table 9.2.

It was previously shown that a combination of minimum errors (MAE or RMSE)
and R2 > 0.8 lead us to a reasonable correlation between the target values and the
predicted values of the models [7, 17]. To track how close the data was to the fitted
regression hyperplane, R2, the coefficient of determination for both GP and MSGP
models was calculated.
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Fig. 9.4 The decomposition of the mean absolute error through the generations for the GP and the
MSGP models

Fig. 9.5 The evolution of the coefficient of determination through the generations for the GP and
the MSGP models
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Table 9.2 Statistical
parameters for different
models

GP MSGPwo−int MSGPw−int

R2 0.8591 0.8581 0.8754

PI 0.1448 0.0469 0.0364

MAE 0.2215 0.0868 0.0648

RMSE 0.2791 0.0904 0.0706

As discussed, Table 9.2 presents the statistical scores for the GP and the MSGP
models with and without fint (X). It also illustrates the effect of the interaction
between variables. It should be noted that adding fint in the MSGPw−int resulted in
an increase of 2% in R2 with respect to MSGP. In addition to this, the performance
index (PI) was also calculated for both GP and MSGP models [8]. Considering
the PI for both MSGPwo−int and MSGPw−int stages suggests the idea that the
interaction function can be neglected in the multi-stage model. The MSGP strategy
decreases the cost of decomposing the error by 15% and also runtime by 30%. The
MSGP strategy can be employed to solve big data problems. The importance of the
proposed method can be shown especially when the input numbers are high, where
traditional GP method might not be a wise choice. The MSGP strategy changes the
magnitude of the complexity of the problems from one N -dimensional problem to
N 1-dimensional ones. It increases the efficiency by losing an infinitesimal increase
in the accuracy and the correlation between the inputs and outputs.

Figure 9.6 depicts the 3-dimensional hyperplane solutions of the inputs by GP,
MSGPwo−int , and MSGPw−int models. It seems the interaction between variables
changed the shrinkage path of the hyperplanes. As shown, standard GP always finds
the best linear plane for the inputs data. Dealing with a binary problem brings
the chance to illustrate both variables x1 and x2 and also the resulting regressed
hyperplane in the same space. The most important aspect here would be how this
hyperplane, without incorporating the interaction between the variables, could fit the
best regression with a reasonable accuracy with respect to the actual output values.

9.5 Conclusions

This chapter discusses statistical and computational aspects of an efficient strategy
called the MSGP method. It specifically focused on the decomposition of error
and correlation in a multivariate nonlinear problem to reveal the capabilities of the
MSGP algorithm to be applied to big data problems. The proposed method separates
one N -dimensional problem into N 1-dimensional problems. To see how the MSGP
performs, the performance of the MSGP model was compared with a standard GP
model in the case of a nonlinear regression problem. The decomposition cost of
both models during the generations was presented. Based on a high correlation in
predicted values, the MSGP outperforms standard GP. These results suggest that
the MSGP algorithm can be employed in various big data problems which are
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Fig. 9.6 The predicted regression hyperplanes by (a) GP, (b) MSGPwo−int , and (c) MSGPw−int

models

more difficult to solve using traditional methods due to the high computational
cost. Error decreased by 15% by using the MSGP model. Additionally, the MSGP
strategy reduced computational runtime by 30%. The evolution of the MAE was
presented for both MSGPwo−int and MSGPw−int stages. This suggests the idea of
solving the N 1-dimensional problems without considering the interactions among
predictor variables. The calculated statistical scores such as R2, and PI suggest
that neglecting the interactions between the input variables causes a loss of only 1%
of the correlation between the inputs and the output. This would save a reasonable
amount of computational time in big data problems. To recapitulate, the MSGP
method opens an innovative avenue to apply evolutionary algorithms in big data
problems to overcome difficulties resulting from the big data features such as
heterogeneity, noise accumulation, spurious correlation, and incidental endogeneity.
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