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Abstract—Massive Online Open Course (MOOC) is a scalable,
free or affordable online course which emerged as one of the
fastest growing distance education platforms in the past decade.
One of the biggest challenges that threatens distance education is
abnormality in the overall level of consciousness of students while
they are taking the course. In this paper, an evolutionary online
framework was proposed to improve the performance of MOOCs
via noninvasive electro-physiological monitoring methods such as
electroencephalography (EEG). Based on the proposed platform,
EEG signals can be recorded from users while they are wearing
any EEG headsets. EEG measures a brain’s spontaneous voltage
fluctuations resulting from ionic current within the neurons of
the brain via multiple electrodes placed on the scalp. A total of
eleven extracted features from EEG signals were employed as
the inputs of the evolutionary classification algorithm to predict
two classes of confused and not-confused for each individual. An
accuracy of 89% was considered significant enough to suggest
that there is difference in the EEG signals of individuals with
confusion versus not-confused individuals.

I. INTRODUCTION

Massive Online Open Course (MOOC) has emerged as one

of the fastest growing platforms for distance education in the

past five years. An MOOC is a scalable, free or affordable

online course which focuses on educational communities. In

2012, the New York Times published an article, ”The Year of

the MOOC” to reflect the importance of this phenomenon [1].

Stanford Online, Coursera, edX, Udacity, and Khan Academy

are only a few notable providers of MOOC. Unlike traditional

educations, MOOCs require additional skills including video-

graphy, instructional designs, and IT platforms. A typical

MOOC instructor requires over 100 hours for recording online

lecture videos and course preparation before class starts. The

instructor also spends 8-10 hours per week on the course,

including participation in discussion forums and Q & A

sessions [2].

One of the biggest challenges that threatens online learning

is abnormality in the overall level of consciousness of students

while they are taking the course and watching the lecture

videos. This is called clouding of consciousness, also known

as brain fog or mental fatigue. Normally, the presence of

the instructor in the class would lower the chance of this

phenomenon. The instructor would see how the students in

the class can respond to their lecture by mimicking students

or asking questions. Depending on the severity of brain fog,

it can interfere with work or school. There are numerous

explanations for why brain fog occurs such as stress, lack

of sleep, hormonal changes, diet, medications, and medical

conditions. For example, chronic stress can increase blood

pressure in the body, weaken the immune system, and trigger

depression which might cause mental fatigue and make the

brain exhausted. In addition to this, poor sleep quality can also

decrease the brain functionality which decreases the overall

level of focus and thinking [3].

Electroencephalography (EEG) is a noninvasive electro-

physiological monitoring method to record electrical activity

of the brain. EEG measures a brains spontaneous voltage

oscillations resulting from ionic current within the neurons

of the brain recorded from multiple electrodes placed on the

scalp [4]. EEG has shown reasonable potential to be used for

diagnosis in different applications including epilepsy, sleep

disorders, depth of anesthesia, coma, brain death, and focal

brain disorders [5][6]. Moreover, it was shown recently that

EEG signals can be used to detect confusion in students

while they are acquiring complex knowledge [7][8]. If learners

resolve confusion, it can be beneficial to them to support the

development of a deeper concept. However, if learners fail to

overcome confusion its effect can ruin the learning process

completely [9]. In this paper, an evolutionary framework was

proposed to employ EEG signals from users in real-time to

improve the quality of MOOC.

II. EVOLUTIONARY ONLINE FRAMEWORK

As discussed in section I, the instructor can see feedback

of students for in-class education by asking them questions or

judging the students from their gestures and body language

signs such as furrowed brow and head scratching. In contrast,

instructors in online education do not have the chance to

get feedback from the students as mentioned. However, the

students usually participate in different Q & A forums and

also post blogs and feedback in the course page. In this paper,

an evolutionary framework was proposed that aims at detecting

the confusion level of students in real time using EEG signals.

The recent availability of simple, low cost (∼ $100 USD),

portable EEG monitoring devices brings new opportunities to

the online learning providers to improve the quality of online

education by providing the users with EEG devices [7]. This
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Fig. 1. Evolutionary online framework: (a) presents user domain with n mem-
bers {U1, · · · , Un} and course domain with m members {C1, · · · , Cm}. (b)
presents the data cloud comprises the data from user member Ui while taking
course Cj . (c) presents the feature extraction process for each data cloud Di.
(d) presents the cross-validation procedure to feed the GP classifier.

would guarantee that students would learn the materials with

higher probability and the online providers could also track the

students’ feedback to the course materials through the EEG

signals.

As seen in Fig. 1, the proposed evolutionary framework

contains four different stages. In the first stage the user domain

and course domain were defined. The user domain contains

n members {U1, · · · , Un} and course domain contains m
members {C1, · · · , Cm} (shown in Fig. 1a). As discussed,

each user is supposed to wear a EEG device to capture the

signals in which they are taking the course. Fig. 2 illustrates

the diagram of NeuroSky MindSet which is a typical single-

channel EEG headset.

Fig. 2. NeuroSky MindSet diagram.1

To illustrate the above concepts, assume the user Ui is taking

the course Ck and user Uj is also taking the course Ck. This

would would mean all the data from Ui to Uj while the course

Ck is being taken would make the data cloud Dk (shown in

Fig. 1b). The total data cloud contains m smaller data clouds

for each course and each small data cloud Dk contains the

EEG signal for n users (shown in Fig. 1c). Note that it is not

necessary for the whole user domain to take the course i. For

instance, the data cloud Dh might have just one user member

Up. This indicates the proposed framework has the flexibility

to handle all the possible combinations of users and courses.

Based on the frequency bands, the features are extracted from

each data cloud Di and converted to vector sets {Xi, Yi} with

continuous values. Fig. 3 demonstrates the comparison of EEG

frequency bands. The EEG signals collection are done based

on different standards depending upon demand. The NeuroSky

API is a standard example for EEG signal streaming which is

presented in Table I.

1http://support.neurosky.com/kb/mindset/mindset-diagram
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Fig. 3. Comparison of EEG frequency bands.

TABLE I
NEUROSKY API FOR EGG SIGNAL STREAMING.

EEG Signal Type Frequency

Raw 512 Hz

Attention 1 Hz

Meditation 1 Hz

Delta 1-3 Hz

Theta 4-7 Hz

Alpha 8-11 Hz

Beta 12-29 Hz

Gamma 30-100 Hz

There are two possible ways to create the class labels Yi at

first. The first proposed procedure is that the online provider

assigns a level of confusion (for example 1 to 10) to the course

contents. The second procedure is that the students send their

feedback and assign a level of confusion for each part of

course. This is necessary at the starting point of the framework.

Once the data cloud contains enough EEG signals for each

course, there is no need for the aforementioned procedures

anymore. To expand more on this concept, once there are

enough user members for each course there will be enough

EEG signals for that specific course and then the GP function

classifier would have enough inputs to fit a model. Thus, for

each new user member Ui who is taking course Cj , the GP

classifier can predict whether or not the student is confused.

Once the prediction is done, the data according to the new

user Ui who was taking course Cj will be added to the data

cloud Dj as well. In this procedure, the data cloud also gets

bigger which would increase the variability of the population

of possible solutions. This leads to the extracted feature being

combined together to have vector sets {X,Y }. Depending on

the demands, the vector sets can be splitted into training and

testing sets (shown in Fig. 1d). In addition to this, k-folds

cross-validation can be employed to overcome possible over-

fitting. Once the prediction is done, a set of decisions can

be made based on the results. For example, if the prediction

is that the student is confused, the learning provider can ask

the student to take a quiz about the material or re-watch the

video. In this way, the quality of online education would be

guaranteed. After the set of decisions are made, the new data

can be added to the database to be used in the population.

Adding the new data to the database would then cause the size

of the data to get bigger. However, the number of inputs would

be the same as before since it depends on feature extraction

stage (Fig. 1c).

Fig. 4. GP function classifier: (a) search for the best nonlinear function with
the highest discriminatory power between the two classes, (b) evaluation of
the model for various thresholds to compute the area under ROC curve, and
(c) threshold selection for the best final model [10].

III. GP FUNCTION CLASSIFIER

Genetic Programming (GP) [11] due to the selection of

designs applying to the fitness and complexity measurements

phase was formulated as a symbolic optimization approach

originally based on functional programming language as an

evolutionary strategy to use computer programs for solving a

problem following the principle of Darwinian natural selection

[12][13][14]. Returning real values based on each tree and

turning into class labels is the way that GP performs classi-

fication. GP instead of using one candidate, uses a group of

individuals (population) and genetic operators to make new

individuals (generations) guided by functions which measure

the quality of each individual (fitness and complexity). GP

function classifier as shown in Fig. 4 [10] was implemented

as a multi-objective genetic programming approach based on

non-dominated sorting genetic algorithm II (NSGA-II) [15].
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Algorithm 1 illustrates the details of the NAGA-II implemen-

tation [16]. For a given data X and classes H0 and H1, GP

classifier searches for a non-linear function y = f(X̄) such the

distributions p(f(X̄)|H0) and p(f(X̄)|H1) are best separated

(shown in Fig. 4a). Each output of the learning function will

be sent to a decision rule L̂i.

L̂i =

{
1 if yi ≥ λ
0 if yi < λ

where 0 ≤ λ ≤ 1 is a threshold to find the highest

discriminatory power between the two classes based on the

area under Receiver operating characteristic (ROC) curve

as the fitness function (shown in Fig. 4b). By varying the

threshold λ, evaluating the GP tree on the training samples and

finding the maximum and the minimum error, false positive

and true positive rates can be calculated and the area under

curve (AUC) can be easily computed. A weighted sum of

calculated false positive and false negative rates was chosen

as the cost. The best threshold was calculated by optimizing

the cost function (shown in Fig. 4c). In addition to this, the

subtree complexity measure [17] was employed as the second

objective in the optimization process.

Algorithm 1: NSGA-II

Input: Generations N , Population P
Output: Best Model

1 Initialize population P ;

2 Generate random population size M ;

3 Evaluate objective values;

4 Assign ranking based on Pareto sort;

5 Generate child population;

6 Binary tournament selection;

7 Recombination and mutation;

8 for i ∈ {1, . . . , N} do
9 for each Parent and Child in Population do

10 Assign ranking based on Pareto sort;

11 Generate sets of non-dominated solutions;

12 Determine Crowding distance;

13 Loop inside by adding solutions to next

generation starting from the first front until N
individuals;

14 end
15 Select points on the lower front with higher crowding

distance;

16 Create next generation;

17 Binary tournament selection;

18 Recombination and mutation;

19 end

IV. EEG DATA & FEATURE EXTRACTION

In 2013, Wang et al. [7] carried out a pilot study to collect

EEG signal data of college students to see if it was possible

to predict the confusion level of the students while they

were watching MOOC videos. In this study, they employed

TABLE II
EXTRACTED FEATURES FROM EEG SIGNALS FOR GP CLASSIFIER.

Feature Sampling Frequency Statistics Variable

Attention 1 Hz Mean X1

Meditation 1 Hz Mean X2

Raw 512 Hz Mean X3

Delta 8 Hz Mean X4

Theta 8 Hz Mean X5

Alpha.1 8 Hz Mean X6

Alpha.2 8 Hz Mean X7

Beta.1 8 Hz Mean X8

Beta.2 8 Hz Mean X9

Gamma.1 8 Hz Mean X10

Gamma.2 8 Hz Mean X11

ten students to watch ten MOOC videos with the topics

including quantum mechanics, linear algebra, geometry, and

stem cells. Each video last for two minutes with different level

of confusion. Some of the videos were easier to understand in

nature while others were more confusing. All the students were

asked to wear a wireless single-channel MindSet as shown in

Fig. 2 which measured the activity over the frontal lobe. The

sensor arm is flexible to bend comfortably towards forehead

since the forehead sensor must touch the user’s forehead. The

contacts of ear pads must touch the skin of the ears to ensure

accurate brain wave reading as well. To run each session, each

student were asked to stay calm and relaxed for 30 seconds

before watching the videos. The EEG signal streams were

collected based on NeuroSky API as shown in Table I.

Fig. 5. Correlation matrix plot of the extracted features with hierarchical
clustering.

The recorded waveforms reflect the cortical electrical activ-

ity. EEG signal intensity is quite small ( μV ), however, the
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main signal frequencies of the human EEG waves can be easily

recorded. Frequency refers to rhythmic repetitive activity (in

Hz). EEG waves have different frequency power bands as

shown in Fig. 3. Voltage refers to the average voltage or peak

voltage of EEG activity. Feature extraction was done based on

the frequency bands and voltages of the recorded EEG waves.

Table II presents the extracted features from EEG signals. For

each of the signal time series, the mean value of the series

was used as the feature. In addition to the frequency-based

features, attention as the proprietary measure of mental focus

and meditation as the proprietary measure of calmness were

also extracted.

Total eleven features, {X1, · · · , X11}, were extracted for

the classification task. Moreover, a set of binary user-defined

labels (confused or not-confused) was used for each sample.

Fig. 5 depicts the correlation matrix of the extracted features

with a color bar which highlights the probability of the

correlation of each of the extracted features with each other.

It is clear that the diagonal has the probability of one (white).

As shown, to illustrate the correlation matrix, the hierarchal

clustering method was employed. Positive correlations are

displayed in white and negative correlations in black. The size

of the circles are proportional to the correlation coefficients.

Thus, as the circle gets progressively larger this indicates the

features are more correlated which in turn can be both positive

or negative (black or white). As seen, attention and meditation

are inversely correlated with the rest of the features and Beta

and Gamma signals showed the highest linear correlation

among all the extracted features.

Fig. 6. 3D surface plot of the mutation rates and the crossover rates versus
fitness measure.

V. RESULTS & DISCUSSION

A GP model based on the multi-objective genetic program-

ming approach and NSGA-II was developed. A total of eleven

TABLE III
PARAMETERS SETTING FOR GP FUNCTION CLASSIFIER.

Parameter Setting

Population Size 1000

Number of Generations 5000

Tournament Size 20

Number of Inputs 11

Crossover Rate 0.1

Mutation Rate 0.9

Number of Cross-Validation Folds 5

Number of CPU Threads 8

1st Objective AUC

2nd Objective Subtree Complexity

Population Initialization Ramped-Half-and-Half

Function Set +,−,×, /,√ , ( )2, ( )3, ( )4

log, exp, sin, cos

extracted features were used as the inputs of the GP model

for the classification task. To optimize the mutation and the

crossover rates of the model, various rates ranging from 0.1
to 0.9 were employed for the developed GP model for 100

generations. Fig. 6 illustrates the three-dimensional surface

plot of the mutation rates and the crossover rates based on the

fitness measure. The highest fitness value was reported with

0.1 as the crossover rate and 0.9 as the mutation rate. These

values were considered to run the developed GP model with

5000 generations and 1000 population for the classification

task. The details of the parameters setting for GP classifier is

presented in Table III.

Fig. 7. GP evolution through generations.

At each generation, the fitness and the complexity were

reported for the best individuals. Fig. 7 depicts the evolution

of the GP model through generations for both fitness and

complexity measures. The left Y-axis was set to fitness mea-

sure, the right Y-axis to complexity, and X-axis to number of

generations. As seen, after 500 generations the model reached

the highest complexity measure around 1400. However, as
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(a) Sensitivity-Specificity (b) Precision-Recall

Fig. 8. Scatter plots of (a) sensitivity-specificity and (b) precision-recall of the all models in the Pareto front (navy circles) with specifying the most accurate
model (red circle), the least complex model (cyan circle) and the knee model (orange circle).

the number of generations increased, the complexity measure

decreased dramatically. After 5000 generations the complexity

reached a value of 756 which is roughly half of the highest

complexity measure that was obtained for this model. In

addition to this, the fitness measure increased through the

number of generations and reached to a value of 0.94043. By

considering the combinations of the fitness and complexity

measures three different models can be defined. The first

model, which is the least complex model which was obtained

at the first generation with complexity measure of 3 and fitness

value of 0.40. The second model, which is the most accurate

model was obtained after 4850 generations with a fitness

value of 0.94043 and complexity measure of 756. The third

model is the knee model, which is the point at the model that

the slope of fitness and complexity measures did not change

through evolution of the generations. The knee model was

found after 1493 generations with a fitness value of 0.92068
and complexity measure of 766. Thus, the knee model can be

a great alternative to be used in the classification task with

80% less computational run-time.

As discussed, the developed GP model was based on multi-

objective programming approach with optimizing both fitness

and complexity simultaneously. The resulted Pareto front

comprises more than 100 models with different characteristics

from the least complexity to the highest accuracy. Fig. 8

visualizes the trade-off of all of the models in the Pareto front

from two different aspects including sensitivity-specificity and

precision-recall. Sensitivity, also known as true positive rate

or recall is the proportion of positive cases that are correctly

classified. Specificity, also known as false positive rate is the

proportion of negative cases that are incorrectly classified as

positive. The performance can be evaluated through how well a

method separates the true positive rate from the false positive

rate. As a straight forward measure, higher sensitivity with

Fig. 9. Violin plots of the summary statistics of all the models in the Pareto
front. Minimum, maximum, and mean values are presented with horizontal
black lines. Red line indicates the median for each statistic.

lower specificity is desired. Fig. 8a presents the scatter plots

of sensitivity-specificity of all the models in the Pareto front.

The least complex model, the most accurate model, and the

knee model were presented in light blue, red, and orange

circles, respectively. Recall measures how many truly relevant

predictions are returned. Precision is defined as the number

of correct positive predictions divided by the total number

of positive predictions (true positive cases plus false positive

cases). Precision is a measure of how many the samples

predicted by the classifier as positive are indeed positive,

which depend on how rare the positive class is. Fig. 8b presents

the scatter plots of the precision-recall of the all models in

the Pareto front. The least complex model, the most accurate
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model, and the knee model were presented in light blue, red,

and orange circles, respectively. Additionally, Fig. 9 illustrates

the distribution of the various score metrics including recall,

precision, accuracy, F-score, FPR, and FNR of all the models

in the Pareto front and their probability density estimation.

A violin plot was used indicating the minimum, maximum,

mean, and median values for each score.

Fig. 10. Radar plot of the classification accuracy for various classifiers
compared to the developed GP function classifier.

As a comparative study the result of the GP function

classifier in terms of classification accuracy was compared

to the results of Wang et al. [7] who employed a Gaussian

Naive-Bayes (GNB) classifier and Ni et al. [8] who employed

several machine learning algorithms including Support Vec-

tor Machines (SVM) with three linear, sigmoid and radial

basis function (RBF) kernels, K-Nearest Neighbors (KNN),

Convolutional Neural Networks (CNN), Deep Belief Network

(DBN), Recurrent Neural Networks-Long Short Term Memory

Networks (RNN-LSTM), and Bidirectional-Long Short Term

Memory Networks (B-LSTM). Fig. 10 depicts the radar plot of

the comparison of the classification accuracies of the various

machine learning algorithms. It is clear that the developed GP

model outperformed the other classifiers. The best classifica-

tion accuracy after the GP model is 73.3%, which was obtained

by Ni et al. using Bidirectional-LSTM algorithm.

VI. CONCLUSIONS & FUTURE WORK

This paper aims at developing an evolutionary online frame-

work to improve the performance of MOOC using EEG

signals. In this regard, a multi-objective genetic programming

strategy based on non-dominated sorting genetic algorithm II

with considering the optimization of area under ROC curve as

the fitness and subtree complexity as the complexity measure

simultaneously. The GP model ran for 5000 generations with

1000 population considering 5-folds cross-validation to over-

come any possible over-fitting. Additionally, the mutation and

crossover rates were optimized over 100 generations based on

the fitness values. A total of eleven extracted features from

EEG signals were employed as the inputs of the GP classifier.

Table IV presents the summary statistics of the results of

the GP classifier including the most accurate model, the least

complex model, and the knee model.

TABLE IV
CLASSIFICATION SCORE METRICS OF THE SELECTED MODELS IN THE

PARETO FRONT.

Model Accuracy Precision Recall F-Score FPR FNR

Best 89.16% 87.67% 91.77% 89.67% 13.59% 8.24%

Knee 73.96% 76.43% 71.15% 73.70% 23.08% 28.86%

Least Complex 57.65% 58.94% 57.31% 58.11% 41.99% 42.70%

Most Accurate 89.16% 87.67% 91.77% 89.67% 13.59% 8.24%

The classification accuracy of the developed GP classifier

was compared with the other machine learning algorithms.

It was clearly shown that the GP classifier outperformed the

other machine learning algorithms applied on this database,

which suggest that there is difference in the EEG signals of

individuals with confusion versus the not-confused individuals.

When considering the difference in regards to the GP

classifier, the high performance of the developed nonlinear

function suggest to employ linear or nonlinear transformation

techniques to map the features to another subspace, in which

the features are not correlated. For example, principal com-

ponent analysis (PCA) is an orthogonal transformation that

converts a set of possibly correlated features into a set of

new features, which are linearly uncorrelated with each other

[18]. In the field of signal processing, it is also called the

discrete Karhunen-Loeve transform (KLT). Additionally, for

high-dimensional multivariate data space PCA can transform

the data into a lower-dimensional subspace while the maxi-

mum information of the data is kept. It is more practical to

feed the evolutionary classifier with lower numbers of inputs

to increase the efficiency and speed up the convergence [18].

In addition to PCA, independent component analysis (ICA)

can be also employed to separate multivariate signals into

additive subcomponents with an assumption that the resulted

subcomponents are non-Gaussian signals, which are statis-

tically independent from each other. In signal processing,

independent component analysis (ICA) is a computational

method as a special case of blind source separation, for

separating a multivariate signal into additive subcomponents.

This is done by assuming that the subcomponents are non-

Gaussian signals and they are statistically independent from

each other [18]. A common example application is applying

ICA to noisy signals such as the ”cocktail party problem”.

Tahmassebi et al. [19][20][21][22][23] have recently shown

the practical ways of data reduction algorithms in big data

problems employing evolutionary approaches and high perfor-

mance computing (HPC). An additional alternative can be L1-

based feature selection algorithms. They usually have a sparse

solution and must be used along with meta-transformers for

selecting features based on importance weights and non-zero
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coefficients [24].
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