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ABSTRACT

Reducing a graph model is extremely important for the dynamical analysis of large-scale networks. In order to
approximate the behavior of such a system it is helpful to be able to simplify the model. In this paper, the graph
reduction model is introduced. This method is based on removing edges that close independent cycles in the
graph. We apply this novel model reduction paradigm to brain networks, and show the differences between the
model approximation error for various brain network graphs ranging from those of healthy controls to those of
Alzheimer’s patients. The graph simplification for Alzheimer’s brain networks yields the smallest approximation
error, since the number of independent cycles is smaller than in either the healthy controls or mild cognitive
impairment patients.
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1. INTRODUCTION

Novel mathematical concepts such as graph theoretical techniques can capture the brain connectivity and its
topology.1–3 These graph networks are mostly based on Pearson correlation and are used for capturing the
structural and/or functional brain connectivity.4–7 From these graphs, new descriptors can be derived in order
to quantify induced changes in topology or network organization, or to serve as theory-driven biomarkers to
predict dementia at the level of the individual subject.8–11

Most graph networks applied to dementia research, even for longitudinal data, are static graph networks.
These models cannot capture the dynamical processes which govern the time evolution of dementia. Therefore, a
new paradigm in dementia research – dynamical graph networks – is required, in order to advance this field and
to overcome the obstacles posed by static graph theory in terms of the prediction, evolution, and connectivity
changes associated with neurodegenerative diseases.12

To address this important issue of analyzing the dynamical behavior, we propose a simplified method which
is frequently applied for dynamical systems,13–15 and results in a model of lower complexity.

Several methods have been applied to the theory of both dynamical and stochastic systems. Balanced
truncation is one such method, and is known as the standard method for model reduction.16 This method
is based on a state-space point of view; employing the canonical observability and controllability Gramian
matrices,17–20 and relating to the past input energy (controllability) and future input energy (observability).
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While for linear systems this procedure is pretty straightforward, for nonlinear systems balancing truncation
becomes, in general, somewhat of a complicated task.21–23 They are not quite efficient, however, in terms of
model reduction for large-scale networks like those found in the human brain. For brain connectivity models,
we require a structure preservation between subsystems and at the same time, a network topology-preserving
mechanism to provide model reduction. In previous work, we addressed this issue by choosing a technique based
on an area aggregation and time-scale modeling for sparse brain networks with densely interconnected hubs
and externally sparse interconnections between these hubs.24,25 In,26 it was shown that the neurons in the hubs
synchronize on the fast time-scale and as aggregated neurons determine the slow dynamics of the neural network.
The basic concept of singular perturbation applied in26 has been extensively studied in other neural networks at
different time-scales.27–36

In this paper, we approximate a brain network using a less complex graph network by removing cycles from
the original brain network. The resulting network has nodes that exchange their relative state information with
their neighbors. We choose the cycles as independent (not sharing edges with each other) and evaluate the
approximation error for dementia networks.

2. MODEL REDUCTION BASED ON CYCLE REMOVAL

2.1 Notation

The trace of the square matrix A is defined as tr(A) and is equal to the sum of its diagonal elements. The
cardinality of a set is denoted as E . The H2-norm of the transfer matrix of a system Σ is defined as ||Σ||2.

2.2 Preliminaries

We consider undirected connected biological networks defined as G = (V, E) consisting of a set of nodes V =
{1, 2, · · · , n} and a set of edges E ⊂ {i, j|i, j ∈ V}, the set of all unordered pairs. A graph G′

= (V ′
, E ′

) is defined
as a subgraph of G = (V, E), denoted as G′ ⊂ G, if V ′ ⊂ V and E ′ ⊂ E . A spanning tree T of graph G = (V, E) is
any connected and cycle-free subgraph of G with T = (V, Et) ⊂ G. If Et contains the edges of a spanning tree T
then the set Ec = E \Et contains the edges in G which are not in T . Thus, these edges must close the cycles in G.
The incidence matrix E of G is given as a |V| × |E|-dimensional matrix with Eik = 1 if node i is the initial node
in edge k and is Eik = −1 if its the terminal node, or 0 otherwise. For a given spanning tree T let Et denote the
columns of the incidence matrix E corresponding to the edges in Et and Ec denote the columns corresponding to
the edges in Ec. Renumbering the edges in E we obtain a new matrix

E = [Et Ec] (1)

In37 was a matrix T defined as

EtT = Ec (2)

The following two definitions are given for edge-disjoint and correlated cycles.

Definition 1: Two cycles are called edge-disjoint, or independent, if they have no edges in common.

Definition 2: Two cycles are called correlated, or dependent, if they are not edge-disjoint.

Definition 3: The Laplacian matrix L of an undirected graph G is a positive semi-definite matrix in Rn×n

defined based on the incidence matrix to be

L = EET (3)

Under the given formulation, the eigenvalues of L are real and nonnegative, and can be expressed in the following
order
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0 = λ1 < λ2 ≤ · · · ≤ λn (4)

Definition 4: The edge Laplacian matrix is defined as

Le = ETE (5)

The edge Laplacian is a symmetric positive semi-definite matrix in R|E|×|E| has the same nonzero eigenvalues as
the Laplacian.

2.3 Dynamical Approximation Model

We consider a dynamical model Σ̂, without an external input and described based on the following equation

Σ : ẋ(t) = −Lx (6)

The vector x ∈ Rn describes the states of the agents and L is the Laplacian matrix of the graph G = (V, E).
The goal of the model reduction is to approximate the dynamical behavior of the given system by a less complex
graph. The strategy that is employed in37 is to remove specific edges in the original graph. The reduced graph
G′

= (V, E ′
) ⊂ G has the same number of nodes as the original graph G but a subset of edges. The reduced

dynamical system Σ̂
′

is defined as

Σ
′

: ẋ(t)
′

= −L
′
x

′
(7)

with L′
being the Laplacian of G′

and x
′ ∈ Rn. The error of approximation between the two dynamical systems

Σ̂ and Σ̂
′

is determined by the H2-norm of the error system. The H2-norm ||Σ− Σ̂′ ||22 represents the energy of
the error of the two systems.

In,37 there are two theorems related to removing one edge or k edges, given that determine the absolute
approximation error and an upper bound of it.

Theorem 1:37 Consider a network Σ consisting of a tree T and the edge e ∈ Ēt with the graph G = (V, Et
⋃
e)

, such that the graph has one cycle c. The absolute approximation error is then bounded and given as

||Σ− Σ̂′ ||22 ≤
1

2

(
l(c)− 1

1 + Λ2

λ2+λn
(l(c)− 1)

+
1

l(c)
− 1

)
(8)

where λ2 and λn are the smallest nonzero and the largest Laplacian eigenvalues of the spanning tree T and l(c)
is the length of cycle c.

Theorem 2:37 Consider a network Σ consisting of a tree T together with k edges e1, e2, · · · , ek ∈ Ēt with the
graph G = (V, Et

⋃k
j=1{ej}) , such that cycles c1, c2, · · · , ck are independent. The absolute approximation error

is then bounded above and given as

||Σ− Σ̂′ ||22 ≤
1

2

k∑
j=1

(
l(cj)− 1

1 + Λ2

λ2+λn
(l(c− j)− 1)

+
1

l(cj)
− 1

)
(9)

where λ2 and λn are the smallest nonzero and the largest Laplacian eigenvalues of the spanning tree T and l(c)
is the length of cycle c.

If all the cycles are independent, then the approximation error equals the sum of the errors bounds corre-
sponding to the removal of independent edges.
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Figure 1. Graphs excel at hiding their structure. Graph clustering aims at revealing their structure.

3. MODEL REDUCTION BASED ON AREA AGGREGATION

Graph networks can exhibit a structure of dense clustered areas, but may have sparse connections between these
areas as shown in Figure 3.

They can be dynamically approximated by a two-time scale system, where the neurons within the same area
synchronize on the fast time-scale because the dense within-area connections drive the nodes of the given area
quickly to reach an equilibrium.

At the same time, the exchange between the areas is based on sparse connections, and can be described at a
slow time-scale. This coupled dynamics leads to a reduced-order model which describes the long-term behavior
of the overall network.

The large-scale brain network is viewed as an interconnected graph with links between the areas of the brain
which are viewed as nodes. Two main parameters describe such a network:26 the node parameter d and the area
parameter δ. The node parameter is given to be:

d =
cE

cI
� 1 (10)

where cE are the densest external links over all nodes and areas and cI are sparsest internal links over all existing
areas. d needs to be a small number. The area parameter is given as

δ =
γE

mcI
� 1 (11)

where γE are the densest external links over all areas and m is the minimal number of nodes found in an area.

In order to obtain a reduced-model approximation, we view the large-scale graph as a structured representa-
tions with dense areas (clusters) and sparse interconnections between these areas.26

4. APPLICATION TO STRUCTURAL BRAIN NETWORKS IN DEMENTIA

We apply the theoretical results for graph simplification on structural (MRI) connectivity graphs38 for control
(CN), mild cognitive impairment (MCI) and Alzheimer’s disease (AD) subjects. For the structural data, the
connections in the graph show the inter-regional covariation of gray matter volumes in different areas. In,38 only
42 out of the 116 were considered from the AAL in the frontal, parietal, occipital and temporal lobes. The nodes
in the graphs depict the regions, while the edges show if a connection exists between these regions or not.

The structural graphs and the removed edges are shown in Figure 4.

In Table 1, the different approximation errors are given for the three groups. The lowest approximation error
is for Alzheimer’s patients. This is because the graph has less independent cycles than both the controls and
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Figure 2. Controllable structural brain networks with the leader set for (A) controls, (B) MCI, and (C) AD.

MCI. For controls and MCI, the error is almost similar as is the number of independent cycles. The results
suggest that the Alzheimer’s network is best approximated by a reduced graph.

We also applied the area aggregation method to the structural brain networks, and were able to determine two
distinct aggregation areas for healthy controls and MCI. For Alzheimer’s, however, the theoretical assumptions
were not fulfilled24 and thus we could not determine the parameters. The area aggregation parameters determined
in24 are given in Table 2. The controls show smaller node and area parameters than the MCIs.

Both model reduction methods – the graph simplification based on cycle removal and the area aggregation
methods – show that Alzheimer’s networks play an ”outlier” role in the graph dynamics, while healthy controls
and MCI exhibit more similar dynamical properties.
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Subjects Number of independent cycles Approximation error
Controls 4 2.26
MCI 4 2.28
Alzheimer’s 3 1.68

Table 1. Approximation error resulting from graph simplification for structural brain networks.

Subject Node Area
Parameter d Parameter δ

CN dave = 1
5 δ = 1

5
MCI dave = 2

3 δ = 2
3

AD - -

Table 2. Area aggregation parameters structural connectivity graphs.38

5. CONCLUSION AND DISCUSSION

This paper presents a new method of reducing large-scale biological graph networks, and gives upper bounds for
the absolute approximation error when these biological networks are approximated by removing cycles from the
original network. The results for dementia brain networks reveal that their best approximation is given based
on graph simplification for Alzheimer’s networks, since there are less independent cycles compared to controls
and MCIs. Additionally, a comparison with a second graph approximation method based on area aggregation is
given.
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