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1. Introduction

Probabilistic neural networks (PNNs) are a group of artificial neural network
built using Parzen’s approach to devise a family of probability density function
estimators (Parzen, 1962) that would asymptotically approach Bayes optimal
by minimizing the “expected risk,” known as “Bayes strategies” (Mood, 1950).
In a PNN, there is no need for massive back-propagation training computa-
tions. Instead, each data pattern is represented with a unit that measures the
similarity of the input patterns to the data pattern. PNNs have shown great
potential for tackling complex scientific and engineering problems. Major
categories of issues that researchers have attempted to address using PNN are
as follows:

l Classification of labeled stationary data patterns
l Classification of data patterns where the data have a time-varying proba-

bilistic density function
l Corresponding author email address: a.h.gandomi@stevens.edu (Amir H.

Gandomi)
l Signal processing applications, dealing with waveforms as data patterns
l Unsupervised algorithms that work with unlabeled data sets
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The first category might be the simplest type among the mentioned four.
Here, the assumption is that the probability density function of the data does
not have significant and meaningful variations through the life span of the
network. In Bankert (1994), the researchers used a PNN based algorithm to
classify 16 � 16 pixel pictures of clouds into 10 categories. A set of 95 labeled
pictures were used to form the PNN. In Wu et al. (2007), PNN is used to
classify 1800 pictures of leaves into 32 categories of plants based on their
geometrical properties. Although the feature extraction process in the latter is
more sophisticated and application dependent, the underlying principles are
the same as what was introduced in Specht (1990). In Nishanth and Ravi
(2016), the authors used PNN to impute the missing categorical features in an
incomplete data set. This application relies on PNNs’ ability to produce
satisfactory results even with small data sets.1

The assumption of time invariance may not hold in most of the practical
use cases and the probability density function of the data shows nontrivial
changes over time. In that regard, Rutkowski (2004) has introduced an
adaptive PNN that can track the changes in the PDF of the data and adjust its
inner parameters to take those changes into account. This approach has been
used in Hazrati and Erfanian (2010) to recognize EEG signals coming from
experiment subjects when they “think” about closing their hands to grab a
virtual ball in virtual reality.

Another important category of applications for PNNs is signal processing.
This can be recognizing the occurrence of an event (Tripathy et al., 2010), the
prediction of severity of an event (Adeli and Panakkat, 2009; Asencio-Cortés
et al., 2017), using the time-domain waveform of a parameter of interest, or
classifying a set of events after preprocessing is done on the waveforms and the
features are extracted as in Mishra et al. (2008) and Wang et al. (2013). In Tri-
pathy et al. (2010), PNN with optimized smoothing factor is used to distinguish
between two events: magnetizing inrush and internal fault, each of which would
warrant a different course of action. In signal processing applications, raw data
are usually a time-domain waveform or a wavelet. This means each data pattern
might consist of hundreds of data points. In such scenarios, the role of pre-
processing, feature extraction, and feature reduction becomesmore prominent as
these procedures can decrease the computational burden while improving the
overall performance of the network at the same time. For example, inWang et al.
(2013), the data patterns arewindows of 200 data points around theR peaks on an
ECG waveforms obtained from multiple subjects with the sampling rate of
360 Hz. The window is chosen in a way so that the significant features of ECG

1. For example, if the data rows that actually have a value for a certain categorical feature is a small

percentage of all the data rows.
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beat that would come before and after the R peak are included. Then, the 200
elements of the data vector are normalized using z-score. Principal component
analysis (PCA) and linear discriminant analysis are then applied to the
normalized data to reduce the number of features that would be fed to the
networkwhilemaximizing their discriminatory potential. The data are then used
to categorize the waveforms into eight types of ECG beats.

Mishra et al. (2008) uses PNN to distinguish 11 types of disturbances in
power quality2 using waveforms of voltage magnitude, frequency, and the
phase of the power supply. First, the S-transform of the waveforms is calcu-
lated. Then, the covariance matrix of the S-transform matrix (called S-matrix)
is calculated. The extracted features are based on standard deviation and en-
ergy of the transformed signals as follows:

l Standard deviation of the vector that is formed by selecting the maximum
value on each column of the S-matrix

l The energy of the vector that is formed by selecting the maximum value on
each column of the S-matrix

l Standard deviation of the vector that is formed by selecting the maximum
value on each row of the S-matrix

l Standard deviation of the phase contour

Mishra et al. (2008) shows the importance of feature selection by
demonstrating that a PNN can work properly even with small number of
features as long as the features contain enough discriminatory information
about the model that the data represent.

Although PNNs need labeled data to operate, unlabeled data can be used in
special cases after being labeled by unsupervised techniques. In Song et al.
(2007), the unlabeled, unstructured set of MRI images are labeled by a
self-organizing map (SOM). The SOM algorithm “softly” labels the images in
the sense that each image can contribute to multiple classes. However, the
degree of contribution to each class might be different.

The rest of this chapter serves as an application-oriented introduction to PNNs
and is structured as follows. First, the fundamental statistical concepts that were
introduced by Parzen (1962) and used by Specht (1990) to develop PNNs are
briefly reviewed in Section 2. Then, Section 3 shows how PNNs use those
mentioned concepts for classification. Section 4 deals with some of the practical
challenges of implementing PNNs. A simple example of a PNN classifier written
in Python is included in Section 5. This chapter is concluded in Section 6.

2. Power quality is a measure of how steady the power supply is. It shows how closely the nominal

values of the voltage magnitude and frequency and the sinusoidal waveform is followed by the

output of the power supply.
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2. Preliminary concepts: nonparametric estimation
methods3

For classification tasks, we need to estimate class-related PDFs as they
determine the classifier’s structure. Thus, each PDF is characterized by a
certain parameter set. For Gaussian distributions, the covariance and the mean
value are needed, and they are estimated from the sample data. Let us also
assume that we have a set of training sample representative of the type of
features and underlying classes, with each labeled as to its correct class. This
yields a learning problem. When the form of the densities is known, we are
faced with a parameter estimation problem.

In nonparametric estimation, there is no information available about
class-related PDFs, and so they have to be estimated directly from the data set.
There are many types of nonparametric techniques for pattern recognition.
One procedure is based on estimating the density functions p(xjui) from
sample patterns. If the achieved results are good, they can be included in the
optimal classifier. Another approach estimates directly the posteriori proba-
bilities P(uijx), and is closely related to nonparametric decision procedures.
They bypass probability estimation and go directly to decision functions.

The following nonparametric estimation techniques related in its concepts
to PNN will be reviewed:

l Parzen windows
l k nearest neighbor
l Potential function

2.1 Parzen windows

One of the most important nonparametric methods for PDF estimation is
“Parzen windows” (Meisel, 1972; Poggio and Girosi, 1990). For a better un-
derstanding, we will take the simple one-dimensional case. The goal is to
estimate the PDF p(x) at the point x. This requires to determine the number of
the samples Nh within the interval [x � h,x þ h] and then to divide by the total
number of all feature vectors M and by the interval length 2h. Based on the
described procedure, we will obtain an estimate for the PDF at x

bpðxÞ ¼ NhðxÞ
2hM

(14.1)

As a support function kh, we will choose

Kh ¼
�
0; 5 : jmj � j1j
0 : jmj > j1j (14.2)

3. This section is taken from Meyer-Baese and Meyer-Baese (2004).
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From Eq. (14.1) we get

bpðxÞ ¼ 1

hM

XM
i¼1

K

�
x� mi

h

�
(14.3)

with the ith component of the sum being equal to zero if mi falls outside the
interval [x � h,x þ h]. This leads to

gðx;mÞ ¼ 1

h
K

�
x� m

h

�
(14.4)

as it can be seen from Fig. 14.1.
If bpðxÞ is considered to be a function corresponding to the number of

samples, we obtain thus bpðxÞ ¼ bpðx;MÞ (14.5)

Parzen showed that the estimate bp with M /N is bias free, if h ¼ h(M)
and

lim
x/N

hðMÞ ¼ 0 (14.6)

In practice, where only a finite number of samples are possible, a right
compromise betweenM and h has to be made. The choice of h is crucial, and it
is recommended to start with an initial estimate of h and then modify it
iteratively to minimize the misclassification error. Theoretically, a large M is
necessary for acceptable performance. But in practice, a large number of data
points increase the computational complexity unnecessarily.

Typical choices for the function K(m) are

KðmÞ ¼ ð2pÞ�1
2 e�

m2

2 (14.7)

KðmÞ ¼ 1

pð1þ m2Þ (14.8)

1/2h

γ(x,m)

m−h m m+h     x

FIGURE 14.1 Clustering process of a two-dimensional vector table. From Anke Meyer-Bäse,

Statistical and syntactic pattern recognition. In Pattern recognition for medical imaging, 147e255,

2004.
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or

KðmÞ ¼
�
1� jmj : jmj � j1j
0 : jmj > j1j (14.9)

2.2 k nearest neighbor density estimation

In the Parzen windows estimation, the length of the interval is fixed, while the
number of samples falling inside an interval varies from point to point. For the
k nearest neighbor density estimation, exactly the reverse holds: the number of
samples k falling inside an interval is fixed, while the interval length around x
will be varied each time, to include the same number of samples k. We can
generalize for the n-dimensional case: in low density areas the hypervolume
V(x) is large, while in high density areas it is small.

The estimation rule can be given now as

bpðxÞ ¼ k

NVðxÞ (14.10)

and reflects the dependence of the volume V(x). N represents the total number
of samples, while k describes the number of points falling inside the volume
V(x).

This procedure can be very easily elucidated based on a two-class classi-
fication task: an unknown feature vector x should be assigned to one of the two
classes u1 or u2. The decision is made by computing its Euclidean distance
d from all the trainings vectors belonging to various classes. With r1, we
denote the radius of the hypersphere centered at x that contains k points from
class u1, while r2 is the corresponding radius of the hypersphere belonging to
class u2.V1 and V2 are the two hypersphere volumes.

The k nearest neighbor classification rule in case of two classes u1 and,
respectively, u2 can now be stated

Assign x to class u1ðu2Þ if V2

V1
> ð < ÞN1

N2

Pðu2Þ
Pðu1Þ (14.11)

If we adopt the Mahalanobis distance instead of the Euclidean distance,
then we will have hyperellipsoids instead of hyperspheres.

2.3 Potential functions

Potential functions represent a useful method for estimating an unknown PDFbpðxÞ from the available feature vectors (Andrews, 1972 and Meisel, 1972). The
estimated PDF is given by a superposition of potential functions g(x,m)

bpðxÞ ¼ 1

M

XM
j¼1

gðx;mjÞ (14.12)
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Fig. 14.2A and B illustrate an example of a potential function for the one-
dimensional and two-dimensional cases.

A possible potential function is

gðx;mÞ ¼ 1

ð2pÞn2sne
�

�kx�mk2
2s2

�
(14.13)

where kxk is a norm in the n-dimensional space. The potential function defines a
distance measure (Mahalanobis distance) between two feature vectors x and m.

Eq. (14.12) describes the complete algorithm for a prespecified potential
function. bpðxÞ can be estimated for every x directly from Eq. (14.12).

The choice of the potential function is not so trivial because the width of
the potential function plays herein an important role. The smaller its width, the
more it peaks and the higher it is. This means it considers only feature vectors
in its immediate neighborhood. Larger widths produce a potential function of a
smoother shape, as it can be seen from Fig. 14.3.

FIGURE 14.3 Importance of the width of the potential function (A) sharper surfaces and (B)

smoother surfaces. From Anke Meyer-Bäse, Statistical and syntactic pattern recognition. In Pattern

recognition for medical imaging, 147e255, 2004.

FIGURE 14.2 Potential functions for the (A) one-dimensional and (B) two-dimensional case.

From Anke Meyer-Bäse, Statistical and syntactic pattern recognition. In Pattern recognition for

medical imaging, 147e255, 2004.
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The choice of a certain variance has a considerable importance on the
overlapping degree of neighboring potential functions. This is especially
critical when potential functions describing feature vectors belonging to
different classes overlap.

There are several possible ways of determining s Batchelor (1974):

1. Let us assume that within the distance s from a specific feature vector,
there are L other feature vectors. The average value describes the distance
DL(m) from the feature vector to the Lth feature vector:

s ¼ 1

M

XM
i¼1

DLðmiÞ (14.14)

To determine L, we have to take into account the distribution of the feature
vectors. In many practical problems, L ¼ 10 is a good choice.

2. s can also be chosen as a multiple of the minimal distance between
two feature vectors. This is necessary to achieve a certain overlapping
degree. In Batchelor (1974), it is recommended to set the multiple equal
to 4.

The potential function has the following general properties (Meisel, 1972):

1. g(x,m) has its maximum at x ¼ m.
2. g(x,m) goes asymptotically toward zero if the distance between the two

feature vectors is very large. This is of special importance for multimodal
distributions.4

3. g(x,m) is a continuous function decreasing monotonically on both sides
from the maximum.

4. If g(x1,m1) ¼ g(x2,m1), then the feature vectors x1 and x2 have the same
similarity degree with respect to m1.

There are several types of known potential functions: besides the above-
mentioned unimodal or multimodal normal distributions, potential functions
built from orthonormal functions are also of interest (Meisel, 1972). They have
the following form

gðx;mÞ ¼
XR
i¼1

l2iFiðxÞFiðmÞ (14.15)

where Fi(x) is an orthonormal function and l is a constant. Orthonormal
functions fulfill Z

FiðxÞFjðxÞdx ¼
�
1 i ¼ j

0 else
(14.16)

with li ¼ 1.

4. There are more than one clusters for each class.
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It is easy to see that they are potential functions becauseXN
i¼1

FiðxÞFiðmÞ ¼ dðx�mÞ (14.17)

where d(x) is a Dirac function and {Fi} describes a set of orthonormal
functions.

The resulting discriminant function can be determined from Eq. (14.16)
and is given by

bpðxÞ¼ 1

M

XM
i¼1

gðx;miÞ ¼ 1

M

XM
i¼1

XR
k¼1

FkðxÞFkðmiÞ (14.18)

where bpðxÞ is the estimated PDF, that is,

bpðxÞ ¼ XR
k¼1

ckFkðxÞ (14.19)

The estimated coefficients ck are

ck ¼ 1

M

XM
i¼1

FkðmiÞ (14.20)

It’s important to note that the potential function estimator is both unbiased
and asymptotically consistent. We also can easily see that the potential
function method is related to Parzen windows. In fact, the smooth function
used for estimation is known as either kernels or potential functions or Parzen
windows.

3. Structure of probabilistic neural networks

To better understand the inner mechanism of the PNNs, one has to look back to
Parzen (1962), in which Parzen showed that the probability density function of
a set of random variables X1,X2, ., Xn with unknown PDF f(X) is estimated
with a family of estimators in the form of

fnðxÞ ¼ 1

nhðnÞ
Xn
j¼1

K

�
x� Xj

hðnÞ
�

(14.21)

where h(n) is a sequence of numbers that satisfies:

lim
n/N

hðnÞ ¼ 0 (14.22)

Probabilistic neural networks: a brief overview of theory Chapter | 14 355



Fig. 14.1 shows a simple example of a function K(y) that can be used in Eq.
(14.21). However, K(y) is generally a Borel function that satisfies these
conditions:

1: sup
�N<y<N

KðyÞ < N (14.23)

2:

Z N

�N

jKðyÞjdy < N (14.24)

3: lim
y/N

jyKðyÞjdy ¼ 0 (14.25)

4:

Z N

�N

KðyÞdy ¼ 1 (14.26)

then

lim
n/N

E½fnðxÞ �f ðxÞ�2 ¼ 0 (14.27)

Eq. (14.27) shows that the Parzen’s family of PDFs can estimate the un-
known PDF of variable X as n / N. The reader is encouraged to study Parzen
(1962) for its fundamental importance for PNNs. Specht used this concept in
Specht (1990) to formulate an approach to classify patterns of data with un-
known class based on initial set of patterns, the real class of which is known.

To explain how a PNN will address that task, consider a sequence of in-
dependent identically distributed pairs of random variables as {Xi,Yi},i ¼ 1,2,
., n, known as the training sequence, where Yi˛{1,2, ., M} is the class
associated with the pattern Xi ˛ A3Rp. The random variable Xi has the un-
known probability density function fm(x) based on its class (fm(x) and is called
“class conditional density” in Rutkowski (2004)).

Define the discriminant function of class j as follows:

djðxÞ ¼ pifjðxÞ (14.28)

where pj is the prior probability of class j and is given by:

pj ¼ nj
n

(14.29)

where n is the number of patterns in the training sequence and nj is the number
of patterns belonging to class j. fj(x) is the probability density function of
variable x. The class of a given pattern x with unknown class is determined as
m if:

dmðxÞ > djðxÞ
cj˛ f1; 2;.;Mg; jsm

(14.30)
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Since fj(x) is usually unknown, its estimator is used in its stead. Using
Eq. (14.21), we can estimate fj(x) as follows:

bf j;nðxÞ ¼ 1

hpnj

Xnj
i¼1

K
�
x;X

ð jÞ
i

�
(14.31)

where XðjÞi is the ith pattern in the training sequence that belongs to class j. p is
the dimension of the input vector and the patterns. Fig. 14.4 shows a basic
illustration of what has been formulated so far. The network that Specht (1990)
introduced has four layers:

1. Input layer
2. Pattern layer
3. Summation layer
4. Decision layer

The input layer is just a set of p junctions for getting the input vector and
distributing the input to the next layer. The pattern layer is where the bulk of the
calculations takes place. Each pattern in the training sequence has a dedicated
pattern unit that applies a two-step process to the input vector before passing its
result to the next layer. In the first step, the pattern unit compares its dedicated

1

2

m

max

X1

X2

Xp

X

X

X

X

X

X

...

...

...

...

X

...
...

...

Output

Input
Layer

Pattern
Layer

Summation
Layer

Decision
Layer

FIGURE 14.4 The basic structure of a probabilistic neural network according to Specht (1990).

The network has four basic layers: the input layer that grabs and distributes the input vector, the

pattern layer that applies the kernel to the input, the summation layer that gets the average of the

output of the pattern units for each class, and the decision layer that declares the class assigned to

input vector based on the unit with the maximum output from the summation layer.
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pattern to the input vector. This is the distance measure that is explained for the

potential functions. Define D
�
x;X

ð jÞ
i

�
as the distance measure of input vector x

and the ith pattern in the training sequence belonging to class j:

l Dot product, defined as

D
�
x;X

ð jÞ
i

�
¼

Xp
k¼1

xk$X
ð jÞ
i;k (14.32)

where xk is the kth element of input vector, and X
ð jÞ
i;k is the kth element of the

ith pattern in the training sequence that belongs to class j. Both vectors are
normalized to unit length before the dot product (Specht, 1990).

l Euclidean distance, defined as

D
�
x;X

ð jÞ
i

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp
i¼1

�
xi � X

ð jÞ
i

�2

s
(14.33)

l Manhattan (or city block) distance:

D
�
x;X

ð jÞ
i

�
¼

Xp
i¼1

���xi � X
ð jÞ
i

��� (14.34)

The second step is applying a nonlinear function (called kernel) to the
distance between input and the training pattern. Define the kernel as
K(x,u) ¼ K(D(x,u)). The kernel function needs to satisfy the four conditions
that were put for potential function:

1. The kernel has to have its maximum at x ¼ u
2.

lim
Dðx;uÞ/N

Kðx; uÞ ¼ 0 (14.35)

3. K (x,u) is continuous on � N < x < N
4. If K(x_1,u) = K(x_2,u), meaning D(x_1,u) = D(x_2,u), then x_1 and x_2

vectors have the same degree of similarity with respect to u.

The implication from the first and second conditions is that the appropriate
kernel has to be chosen with respect to the choice of the distance measure. The
implicationof the forth condition is that thevectorswith the samedistance fromthe
data patternuwill have the same result after thekernel is applied to them.These are
some examples of acceptable kernels for the mentioned distancemeasures:

l For dot product:

Kðx; uÞ ¼ exp

	
x:u� 1

2s2



(14.36)
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Note that both x and u are normalized before the dot product. Therefore,
the maximum value of the dot product can be 1 that occurs at x ¼ u.

l For Euclidean distance:

Kðx; uÞ ¼ exp

	�Dðx; uÞ
2s2



(14.37)

where D(x,u) is the Euclidean distance between x and u. The Euclidean dis-
tance is always positive which means the maximum value for the kernel
happens when xx ¼ u and D(x,u) ¼ 0. This is also true for the Manhattan
distance measure.

l For the Manhattan distance:

Kðx; uÞ ¼ exp

"
�Dðx; uÞ2

2s2

#
(14.38)

The pattern units will pass the result of their calculations to the summation
units. Each class j˛{1,2, ., M} has a dedicated unit in the summation layer.
The summing unit of class j calculates the average of the values coming from
the pattern units which had a pattern that was associated with class j, as
Fig. 14.4 shows.

Another feature that can be incorporated in the summation layer is deter-
mining the significance of a false decision for any given class j. Define lj as the
loss coefficient associated with the decision that a given input x belongs to
class j while its actual class is different. This coefficient can be added to the
discriminant function as follows:bdjðxÞ ¼ pjljbf jðxÞ (14.39)

The value of lj cannot be deducted from the data and is subjectively set
depending on the application and significance of the false positive decision for
class j. In an application where there is no difference between the classes in
that regard, lj can be set to 1 for all j˛{1,2, ., M}.

The role of the decision layer is to pick the largest bdjðxÞ and declare j as the
class of input vector x.

4. Improving memory performance

The PNNs have the advantage of not needing extensive training computation
time that is associated with the networks that work with back-propagation
training method. However, this advantage comes at the cost of requiring
massive memory for operation. Each row of the data set needs an independent
unit on the pattern layer to compare the similarity between the input vector and
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its corresponding data set row. When the PNNs were formulated by Specht
(1990), the size of the data sets was significantly smaller than today. Still, the
memory requirement was taxing for the technology of the day. This fact still
holds today despite the advancement of the hardware technology since early
1990s. We explore two families of approaches to reduce the size of the PNN
problem without significant loss of performance.

4.1 Feature reduction using principal component analysis

The conventional PCA can be used to reduce the size of the data patterns and
the inputs without losing much of the information embedded in the data set. In
that regard, PCA projects a high dimensional data vector X ˛ Rn into a lower
dimension subspace Rq3Rn, knowing n > q. Here, a brief explanation about
applying PCA to data patterns is included. The details of the method and why
it works can be found in Jolliffe (2011).

Suppose X ˛ Rd�n is a matrix of data patterns where each row represents a
pattern and each column represents an individual feature. The goal is to find a
mappingM ˛ Rn�q:Rn / Rq that can map the rows of matrix X to new rows of
matrix bX where bX ˛Rd�q is the lower dimension approximation of matrix X.
The matrix W is obtained in this fashion:

1. Center the data matrix by subtracting each element by the mean value of its
corresponding column:

Xij new ¼ Xij old � mj (14.40)

mj is given by:

mj ¼
1

d

Xd
i¼1

Xij (14.41)

where d is the number of rows in matrix X, which is the number of data
patterns.

2. Form the covariance matrix as V ¼ XTX
3. Find the eigenvalues of matrix V and their corresponding eigenvectors.

Suppose l1,l2,.ln are eigenvalues of the covariance matrix V in
descending order and y1,y2,.yn are their corresponding eigenvectors (yi
corresponding with li and l1>l2>, ., >ln).

4. Form the mapping matrix M, the columns of which are the first q eigen-
vectors of matrix V:

M ¼ ½y1jy2j.jyq�

Choosing q is a tradeoff between the level of dimension reduction and the
preservation of the information. As q increases toward n, the information loss
will reduce. However, smaller values of q will reduce the size of the data more.
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5. Calculate the mapped data using matrix M:bX ¼ XM (14.42)

This approach can reduce the computation time by reducing the number of
input units and the weight matrix. This reduction can reduce the calculation
time that is spent in the input layer.

PCA has been used in Wu et al. (2007) to reduce the dimension of the input
vector from 12 to 5 before using the input to classify leaf images into 32
categories of plants. Also Othman and Basri (2011) used PCA to extract
features from a data set of medical images. Because the original inputs are
vectors made from individual images of M � N pixels, each input vector has
M � N elements. This is dramatically more than the 12 input features in Wu
et al. (2007). Then PCA is used to reduce the dimension of the input vectors
from M � N to d � M � N. In Wang et al. (2013), the input vector is a
waveform obtained by applying a window of 200 data points to ECG signals.
The mentioned windows are centered on R peaks (100 points on each side of
the R peak). This means the original input vector has 200 elements. The vector
elements are then normalized using Z-score method to decrease superficial
differences between the sample waveforms using this formula:

xz score ¼ xoriginal � m

s
(14.43)

where m is the mean value of xoriginal and s is the standard deviation. Then, PCA
is used to reduce the features before the data were used to form the pattern layer.

4.2 Pattern layer size reduction using clustering

In a normal PNN, each data pattern is assigned to a pattern unit in the pattern
layer that individually measures the similarity between the input vector and its
assigned data pattern. One can imagine that in this architecture the pattern
layer can get extremely (and possibly impractically) large as the size of the
data gets bigger. We know from Parzen (1962) that larger data sets can in-
crease the accuracy of the estimation of the probability density function of the
data. So a larger data set should be welcome and not a concern for practicality.
One prominent approach to reduce the number of pattern units without losing
too much information is creating clusters from data patterns using k-means
algorithm. This comes from the idea that not all the data patterns contain
original, independent, and discriminating information.5

5. This is independent from PCA, which can be used in conjunction with k-means to reduce the

computation burden of the PNN even more.
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With this approach, each pattern unit has a group of one or more data patterns
assigned to it. Each pattern group (known as cluster) is represented by its centroid.
Here is a brief explanation of the k-means clustering algorithm for PNN:

1. Determine the number of the clusters, which will be the same as the
number of the pattern units.

2. Assign a random centroid to each cluster. The centroid of the cluster is the
mean value of all the data patterns in the cluster. Initially, it has a random
value that will be adjusted by the data patterns that will be added.

3. Add a new data pattern to the cluster that can minimize this formula:

ðAjÞ2
ðAj þ 1Þ2

��xk � xj
��2 (14.44)

where Aj is the number of patterns already in the cluster, xj is the coordinates
of the cluster centroid, and xk is the new data pattern vector that is being added
to the cluster.

4. Update the cluster centroid using the coordinates of the newly added
pattern that minimized Eq. (14.44):

xjnew ¼ Aj
oldx

j
old þ xk

Aj
old þ 1

(14.45)

Aj
new ¼Aj

old þ 1 (14.46)

5. After all the data patterns are added to their clusters, use the cluster cen-
troids instead of the data patterns to form the input weights in the pattern
layer.

Note that the output of each pattern unit needs to be multiplied by the
number of data patterns in its associated cluster (Aj) before it is added to the
summation unit.

5. Simple probabilistic neural network example in Python

In this example, we have included three clusters (in red, yellow, and green) in
two-dimensional coordinates (feature 1 and feature 2). Table 14.1 presents the
data points along with the class label for each point. In addition to this,
Fig. 14.5 presents the two-dimensional feature space for the simple PNN
example. The data points are clustered into red, yellow, and green. The desired
point to be clustered is shown as black star. In this example, we tried to reflect
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the architecture of the PNN as simple as we can. The code is written in Python
(Tahmassebi, 2018). It includes three different functions: (1) a function to
create a simple dummy data in two-dimensional, (2) a function to calculate all
the PNN stages including input layer, pattern layer, kernel, and summation,
and (3) a function to visualize the results and data points. All these functions
are called in the main function. In this example, we simply employed a two-
dimensional Gaussian distribution as the kernel. However, any other kernels
can be used. As shown, the desired point (shown in black star) is obviously in
the green cluster and the PNN model as seen did correctly cluster this point as
green.

FIGURE 14.5 The two-dimensional feature space for probabilistic neural network. The data points

are clustered into red, yellow, and green. The desired point to be clustered is shown as black star.

TABLE 14.1 Simple probabilistic neural network example:

Data.

Feature 1 Feature 2 Class label

0.1 0.9 1 (red)

0.5 0.9 1 (red)

0.2 0.7 1 (red)

0.6 0.6 2 (yellow)

0.8 0.8 2 (yellow)

0.4 0.5 2 (yellow)

0.8 0.5 3 (green)

0.6 0.3 3 (green)

0.3 0.2 3 (green)
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6. Conclusions

This chapter has been an introduction to PNNs and their numerous applica-
tions in science and engineering from a practical point of view. These appli-
cations range from simple pattern recognition to complex waveform
classification. The PNNs are most effective when used alongside methods of
feature extraction and feature reduction, the latter of which can reduce the
volume of required calculation and memory as well. Because the pattern units
of the same class operate independently from the ones of another class in the
pattern layer, the PNN can be considered a great use case for parallel
computing. By parallel computing gaining traction during the last decade, the
PNNs can emerge again as an attractive alternative to the feedforward back-
propagation networks in applications that have massive amounts of data
available for training.
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