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Impact of Machine Learning With Multiparametric Magnetic
Resonance Imaging of the Breast for Early Prediction of Response

to Neoadjuvant Chemotherapy and Survival Outcomes in
Breast Cancer Patients
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Purpose: The aim of this study was to assess the potential of machine learning
with multiparametric magnetic resonance imaging (mpMRI) for the early predic-
tion of pathological complete response (pCR) to neoadjuvant chemotherapy
(NAC) and of survival outcomes in breast cancer patients.
Materials and Methods: This institutional review board–approved prospective
study included 38 women (median age, 46.5 years; range, 25–70 years) with
breast cancer who were scheduled for NAC and underwent mpMRI of the breast
at 3 T with dynamic contrast-enhanced (DCE), diffusion-weighted imaging
(DWI), and T2-weighted imaging before and after 2 cycles of NAC. For each le-
sion, 23 features were extracted: qualitative T2-weighted and DCE-MRI features
according to BI-RADS (Breast Imaging Reporting and Data System), quantitative
pharmacokinetic DCE features (mean plasma flow, volume distribution, mean tran-
sit time), and DWI apparent diffusion coefficient (ADC) values. To apply machine
learning to mpMRI, 8 classifiers including linear support vector machine, linear
discriminant analysis, logistic regression, random forests, stochastic gradient de-
scent, decision tree, adaptive boosting, and extreme gradient boosting (XGBoost)
were used to rank the features. Histopathologic residual cancer burden (RCB) class
(with RCB 0 being a pCR), recurrence-free survival (RFS), and disease-specific
survival (DSS)were used as the standards of reference. Classification accuracywith
area under the receiving operating characteristic curve (AUC) was assessed using
all the extracted qualitative and quantitative features for pCR as defined by RCB
class, RFS, and DSS using recursive feature elimination. To overcome overfitting,
4-fold cross-validation was used.
Results: Machine learning with mpMRI achieved stable performance as shown
by mean classification accuracies for the prediction of RCB class (AUC, 0.86)
and DSS (AUC, 0.92) based on XGBoost and the prediction of RFS (AUC, 0.83)
with logistic regression. The XGBoost classifier achieved the most stable perfor-
mance with high accuracies compared with other classifiers. The most relevant
features for the prediction of RCB class were as follows: changes in lesion size,
complete pattern of shrinkage, and mean transit time on DCE-MRI; minimum
ADC on DWI; and peritumoral edema on T2-weighted imaging. The most
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relevant features for prediction of RFS were as follows: volume distribution,
mean plasma flow, andmean transit time; DCE-MRI lesion size; minimum,max-
imum, and mean ADC with DWI. The most relevant features for prediction of
DSS were as follows: lesion size, volume distribution, and mean plasma flow
on DCE-MRI, and maximum ADC with DWI.
Conclusions:Machine learningwithmpMRI of the breast enables early prediction of
pCR toNAC aswell as survival outcomes in breast cancer patientswith high accuracy
and thus may provide valuable predictive information to guide treatment decisions.

Key Words: breast cancer, machine learning, neoadjuvant chemotherapy,
residual cancer burden, multiparametric magnetic resonance imaging,
dynamic contrast-enhanced MRI, diffusion-weighted imaging

(Invest Radiol 2018;00: 00–00)

N eoadjuvant chemotherapy (NAC) as a standard of care offers several
advantages such as increased rates of breast-conserving surgery and

decreased axillary dissection.1 The recent St Gallen consensus statement
also indicates that NAC is widely used in TNBC and HER2+ subtypes of
breast cancer, with this preference being extended to women who are
eligible for breast conservation at diagnosis.1 This new development
is driven by response-guided assessment of prognosis, adjuvant treat-
ment, and follow-up. The achievement of a pathological complete re-
sponse (pCR) is significantly associated with improved disease-free and
overall survival2 in breast cancer patients undergoing NAC, whereas poor
outcome after NAC is associated with less favorable prognosis.3 Never-
theless, a pCR is achieved in only 30%of the patients after the completion
of NAC and thus determining factors and an accurate means to predict
treatment response as early as possible are desirable for identifying
patients who do not benefit from NAC.2 Several studies have demon-
strated that dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) is the most sensitive method for the assessment and pre-
diction of treatment response to NAC.4–8 In addition, it has been dem-
onstrated that multiparametric MRI (mpMRI) using morphological as
well as additional functional parameters such as diffusion-weighted
imaging (DWI) has the potential for improving the prediction of treat-
ment response.6,8–12 Further, with advances in the field of bioinformatics,
new approaches to medical imaging data analysis for predictivemodeling
in cancer evaluation have been developed.13 In contrast to traditional sta-
tistical approaches, which usually consider a limited finite set of hypoth-
eses and evaluate them, machine learning approaches have the capability
to generate models for prediction by extensively searching through the
model and parameter space and thus have been embraced for predictive
modeling and decision-making in biomedicine.14–18 Inital results have
demonstrated the potential for the application of machine learning with
MRI almost exclusively on DCE-MRI for prediction of treatment re-
sponse, but the potential of mpMRI in this context has not yet been fully
explored.19–21 Therefore, the aim of this studywas to assess the feasibility
of machine learning with mpMRI using T2-weighted MRI, DCE-MRI,
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and DWI for the early prediction of pCR to NAC, recurrence-free sur-
vival (RFS), and disease-specific survival (DSS) in breast cancer patients.

MATERIALS AND METHODS
The institutional review board approved this prospective, single-

institution study and retrospective radiomics data analysis. All patients
gave written informed consent.

Patients
Between April 2008 and April 2013, 38 patients (median age,

46.5 years; range, 25–70 years) who fulfilled the following inclusion
criteria were enrolled in this study: ≥18 years, not pregnant, not breast-
feeding, and new diagnosis of histopathologically proven breast cancer
scheduled for NAC (BI-RADS [Breast Imaging Reporting andData Sys-
tem] 6, biopsy-proven malignancy). Exclusion criteria were previous
treatment and contraindications for MRI or MRI contrast agents. All pa-
tients underwent mpMRI 2 weeks before initiation and after 2 cycles
of NAC. For all patients, the following information were recorded at ther-
apy: age, type and start date of systemic therapy, histologic type, tumor
grade, receptor status, tumor proliferation rate (ki67), nodal status, date
of progression (local recurrence, distant metastases) to determine dura-
tion (months) of RFS, and date and cause of death or date of last
follow-up to determine duration (months) of DSS.

Magnetic Resonance Imaging
All patients underwent mpMRI of the breast at 3 T in the prone

position (Trio Tim; Siemens Medical Solutions, Erlangen, Germany)
TABLE 1. Tumor Histopathology, Grade, and Receptor Status Proliferatio

RCB 0 (pCR) RCB 1

No. lesions 9 (23.68%) 7 (18.42%)
Age at diagnosis, y 53.22 (11.9) 41.71 (12.73)
Tumor type
IDC 8 (21.05%) 7 (18.42%)
ILC 1 (2.63%) 0 (0.0%)

Histologic grade
1 0 (0.0%) 0 (0.0%)
2 1 (2.63%) 3 (7.89%)
3 8 (21.05%) 4 (10.53%)

ER
Positive 3 (7.89%) 5 (13.15%)
Negative 6 (15.78%) 2 (5.26%)

PR
Positive 0 (0.0%) 4 (10.53%)
Negative 9 (23.68%) 3 (7.89%)

HER2
Positive 4 (10.53%) 2 (5.26%)
Negative 5 (13.15%) 5 (13.15%)

ER and PR
Positive 0 (0.0%) 3 (7.89%)
TN 4 (10.53%) 1 (2.63%)

ki67
High (≥20%) 9 (23.68%) 6 (15.78%)
Low (20%) 0 (0.0%) 0 (0.0%)
N/A 0 (0.0%) 1 (2.63%)

Tumor diameter at baseline
22.55 (18.66) 23.00 (13.27)

RCB indicates residual cancer burden; ER, estrogen receptor; PR, progesteron r
(ER, PR, HER2−); IDC, invasive ductal carcinoma; ILC, invasive lobular carcinom
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with a dedicated 4-channel breast coil (In Vivo, Orlando, FL). The fol-
lowing protocol was used before and during NAC:

• AT2-weighted turbo spin echo sequencewith fat suppression: time of
repetition (TR)/time of echo (TE), 4800/59 milliseconds; field of view
(FOV), 340 mm; 44 slices at 4 mm; flip angle, 120 degrees; matrix,
384 � 512; and acquisition time (TA), 2:35 minutes.

• DWI—a double-refocused, single-shot echo-planar imaging with in-
version recovery fat suppression: TR/TE/time of inversion, 13700/
83/220milliseconds; FOV, 340� 117mm; 40 slices at 3.5mm;matrix,
192� 64 [50% oversampling]; 2 averages; b-values, 50 and 850 s/min2;
and TA, 3 minutes 19 seconds.

• DCE-MRI—until December 2011, a hybrid DCE-MRI protocol was
used with the following sequences: T1-weighted volume-interpolated
breathhold examination sequences (TR/TE, 3.62/1.4 milliseconds; FOV,
320 mm; 72 slices; 1.7 mm isotropic; matrix, 192 � 192; one average;
TA, 13.2 seconds per volume; 37 measurements) and T1-weighted
turbo fast low-angle shot 3-dimensional sequences with selective
water excitation (TR/TE, 877/3.82 milliseconds; FOV, 320 mm; 96
slices; 1 mm isotropic; matrix, 320 � 134; one average; TA 2 minutes)
with a total time of acquisition of 9:20 minutes.22 From January
2012 onwards, a transversal T1-weighted time-resolved angiography
with stochastic trajectories was acquired (water excitation fat satura-
tion; TR/TE, 6.23/2.95 milliseconds; flip angle, 15 degrees; FOV,
196 � 330 mm2; 144 slices; spatial resolution, 0.9 � 0.9 � 1 mm;
temporal interpolation factor 2; temporal resolution, 14 seconds; ma-
trix, 384� 384; one average; center k-space region with a resampling
n Rate Stratified by RCB Class

RCB 2 RCB 3 Total

14 (36.84%) 8 (21.05%) 38 (100%)
52.33 (9.14) 47.25 (9.13) 49.47 (10.83)

13 (34.21%) 8 (21.05%) 36 (94.74%)
1 (2.63%) 0 (0.0%) 2 (5.26%)

1 (2.63%) 0 (0.0%) 1 (2.63%)
3 (7.89%) 3 (7.89%) 10 (26.32%)
10 (26.32%) 5 (13.15%) 27 (71.05%)

7 (18.42%) 6 (15.78%) 21 (55.26%)
7 (18.42%) 2 (5.26%) 17 (44.74%)

8 (21.05%) 5 (13.15%) 17 (44.74%)
6 (15.78%) 3 (7.89%) 21 (55.26%)

6 (15.78%) 2 (5.26%) 14 (36.84%)
8 (21.05%) 6 (15.78%) 24 (63.16%)

6 (15.78%) 5 (13.15%) 14 (36.84%)
3 (7.89%) 1 (2.63%) 9 (23.68%)

11 (28.94%) 4 (10.53%) 30 (78.95%)
0 (0.0%) 2 (5.26%) 2 (5.26%)
3 (7.89%) 2 (5.26%) 6 (15.79%)

Mean
36.64 (14.73) 61.875 (27.50) 36.10 (23.32)

eceptor; HER2, human epidermal growth factor receptor 2; TN, triple negative
a; N/A, not available.

© 2018 Wolters Kluwer Health, Inc. All rights reserved.
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TABLE 2. NAC Regimes and RCB Class for all Patients

Number NAC Regimes RCB Class

1 Anthracycline/taxane-containing plus
herceptin and avastin

3

2 Anthracycline/taxane-containing
plus herceptin

2

3 Anthracycline/taxane-containing
plus herceptin and avastin

0

4 Anthracycline/taxane-containing plus
herceptin and avastin

0

5 Anthracycline/taxane-containing
plus herceptin

2

6 Anthracyclin-containing 0
7 Anthracycline/taxane-containing 2
8 Anthracyclin-containing 1
9 Anthracycline/taxane-containing 0
10 Anthracycline/taxane-containing 3
11 Anthracycline/taxane-containing 3
12 Anthracycline/taxane-containing 2
13 Anthracycline/taxane-containing 2
14 Anthracycline/taxane-containing 1
15 Anthracycline/taxane-containing 3
16 Anthracyclin-containing plus herpceptin 3
17 Anthracycline/taxane-containing 2
18 Taxane-containing 2
19 Epirubicin-taxotere plus herceptin 3
20 Anthracycline/taxane-containing 2
21 Anthracycline/taxane-containing 0
22 Anthracycline/taxane-containing 2
23 Anthracycline/taxane-containing 2
24 Anthracycline/taxane-containing 1
25 Anthracycline/taxane-containing 1
26 Anthracycline/taxane-containing 3
27 Anthracycline/taxane-containing 1
28 Anthracycline/taxane-containing 2
29 Anthracycline/taxane-containing 2
30 Anthracycline/taxane-containing 0
31 Anthracycline/taxane-containing 1
32 Anthracycline/taxane-containing 1
33 Anthracycline/taxane-containing

plus herceptin
0

34 Anthracycline/taxane-containing 0
35 Anthracycline/taxane-containing plus

herceptin and avastin
0

36 Anthracycline/taxane-containing 3
37 Anthracycline/taxane-containing 2
38 Anthracycline/taxane-containing 2

NAC indicates neoadjuvant chemotherapy; RCB, residual cancer burden.
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rate of 23%; reacquisition density of peripheral k-space of 20%; and
TA, 6:49 minutes).

A standard dose (0.1 mmol/kg body weight) of gadoterate
meglumine (Gd-DOTA; Dotarem; Guerbet, France) was injected intra-
venously as a bolus at 4 mL/s followed by a saline flush. The total MRI
examination time was approximately 10 to 12 minutes.

Image Analysis
Multiparametric magnetic resonance imaging data were evaluated

by 2 experienced breast radiologists (K.P., 12 years of experience; G.W.,
5 years of experience). Qualitative and quantitative imaging features were
extracted from baseline and follow-up mpMRI images. These features
were used as attributes to feed machine learning classifiers.

Qualitative Imaging Features
For all lesions size (largest diameter) in the right-left (RL),

craniocaudal, and anterior-posterior (AP) direction, patterns of shrinkage
(concentric, fragmentation, or complete) were recorded. Signal intensity
on T2-weighted sequences (hypointense, isointense, or hyperintense)
and the presence or absence of a peritumoral edema were noted. In
DCE-MRI, tumors were classified as mass or non–mass-enhancing le-
sions. According to the fifth edition of the American College of Radiol-
ogy and Breast Imaging Reporting and Data System,23 the following
descriptors were assessed for masses: shape (round, oval, and irregular),
margins (circumscribed, irregular, and spiculated), and internal enhance-
ment characteristics (homogeneous, heterogeneous, rim enhancement,
and dark internal septations). For non–mass-enhancing lesions, the distri-
bution (focal, linear, regional, segmental, multiple, and diffuse), internal
enhancement pattern (homogeneous, heterogeneous, clumped, and clus-
tered ring), and symmetry (symmetric and asymmetric) were evaluated.

Quantitative Imaging Features
For pharmacokinetic assessment of DCE-MRI, the mean plasma

flow, volume distribution, and mean transit time were assessed with para-
metric maps using a 3-dimensional–based region of interest (ROI) seg-
mentation approach using the UMM-perfusion tool of OSIRIX ® version
7.0 (University of Heidelberg).24

Diffusion-weighted imaging high b-value (ie, 850 s/mm2) im-
ages were qualitatively assessed for hyperintense regions corresponding
to the lesion on DCE-MRI. The slice with the greatest representative
portion of the tumor was selected. One 2-dimensional ROI with a min-
imum area of 1 mm2 was drawn on the part of the tumor with the lowest
apparent diffusion coefficient (ADC) using OSIRIX, and the mean, min-
imum, and maximum ADC was recorded.

Histopathologic Diagnosis
All surgical specimens were analyzed by 2 breast pathologists

(Z.B., 7 years of experience in breast pathology; S.A., 7 years of experi-
ence in breast pathology). The residual cancer burden (RCB) score was
used for assessment of pathological treatment response. The RCB score
is as continuous variable that is calculated using the following parameters:
(1) primary tumor bed area (mm2), overall cancer cellularity (% of area),
and percentage of cancer that is in situ disease (%); and (2) the number of
positive lymph nodes and diameter of largest metastasis (millimeter).25

Scores were then expressed as 4 RCB classes: RCB 0 is consistent with
pCR with no evidence of residual disease. If residual disease is present,
this was classified into 3 categories: RCB 1, minimal residual disease
present; RCB 2, moderate response to neoadjuvant disease and moderate
residual disease burden; and RCB 3, extensive residual disease burden.26

Survival Outcomes
For the assessment of RFS and DSS, all patients underwent clini-

cal and imaging follow-upwithmammography, sonography, or computed
© 2018 Wolters Kluwer Health, Inc. All rights reserved.
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tomography until progression, followed by routine follow-up until death.
At the discretion of the treating physician, some patients were also
followed with MRI of the breast and positron emission tomography/
computed tomography scans. All local and distant recurrences were
histopathologically verified.27

Machine Learning
Eight robust machine learning algorithms including linear

support vector machine (SVM), linear discriminant analysis (LDA),
www.investigativeradiology.com 3
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logistic regression (LR), random forests (RF), stochastic gradient
descent (SGD), decision tree, adaptive boosting (AdaBoost), and ex-
treme gradient boosting (XGBoost) were applied to the mpMRI data
to predict RCB class, RFS, and DSS. For details on the individual
classifiers, refer to Supplementary S1, Supplemental Digital Con-
tent, http://links.lww.com/RLI/A406. For the purposes of predicting
RCB class, machine learning class 1 denoted a complete (RCB 0) and
machine learning class 0 an incomplete pathologic response (RCB class
FIGURE 1. Feature importance of mpMRI model in prediction of (A) RCB clas

4 www.investigativeradiology.com
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1, 2, 3). Each specific learning algorithm was designed to provide
the best model to fit the input data and predict the class labels cor-
rectly. Optimum ranking of the features based on their importance
in the models was reported using recursive feature elimination. To
overcome overfitting, 4-fold cross-validation was used to differen-
tiate between 2 groups of each defined classes. Area under the
receiver operation characteristic curve (AUC) was used as the
classification metric.
s, (B) RFS, and (C) DSS.

© 2018 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 2. A boxplot illustration of various machine learning algorithms
performance using recursive feature elimination to predict (A) RCB
class, (B) RFS, and (C) DSS using 4-fold cross-validation. AUC was used as
the classification metric.
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RESULTS
Of the 38 patients in the study, after completion of NAC, 9 patients

were classified as RCB class 0, 7 as RCB class 1, 14 as RCB class 2, and
8 as RCB class 3. Tumor histopathology, grade, and receptor status pro-
liferation rate stratified by RCB class are summarized in Table 1. Neoad-
juvant chemotherapy regimens and RCB class for all patients are listed in
Table 2. Themedian follow-up time for all patientswas 65months (range,
6–119 months). Eight patients (21.05%) progressed during the follow-up
period after a median interval of 16 months (range, 1–56 months), and
4 patients (10.52%) died of breast cancer during the follow-up period at
a median interval of 53 months (range, 12–87 months).

Based on recursive feature elimination, feature importance in
the mpMRI model for prediction of RCB class, RFS, and DSS are
summarized in Figure 1. For prediction of RCB class, RFS, and DSS,
qualitative and quantitative features from all mpMRI sequences, that is,
T2-weighted, DCE, and DWI, were necessary. The most relevant features
for prediction of RCB class were qualitative features including changes
in lesion size (RL, craniocaudal, and AP) and complete pattern of
shrinkage on DCE-MRI, quantitative pharmacokinetic features in-
cluding mean transit time with DCE-MRI, peritumoral edema on
T2-weighted imaging, and minimum ADC with DWI. For prediction
of RFS, the most relevant features were the qualitative feature of lesion
size on DCE-MRI (RL, AP), the quantitative features of volume distri-
bution, and mean plasma flow and ADC with DWI. For prediction of
DSS, the qualitative feature of lesion size (RL, AP), the quantitative
pharmacokinetic features of volume distribution, and mean plasma
flow and maximum ADC with DWI were most relevant.

Figure 2 presents the boxplot illustration of the performance of
recursive feature elimination along with 8 machine learning classi-
fiers in prediction of RCB class (Fig. 2A), RFS (Fig. 2B), and DSS
(Fig. 2C). Table 3 summarizes the AUCs for all classifier models.
To identify the most stable classifier with high accuracy and low variance
for predicting RCB class, RFS, and DSS, radar plot presentations of the
mean AUC and the best AUC of the 8 machine learning classifiers were
calculated (Fig. 3). XGBoost outperformed all other classifier models
including SVM, LDA, LR, RF, SGD, decision tree, and AdaBoost in the
prediction of RCB class and DSS, with AUCs ranging from 0.8577 to
0.9430 and 0.9052 to 0.92 for RCB class and DSS, respectively. For the
prediction of RFS, LR showed better performance with AUCs ranging
from 0.8259 to 0.8666 (~3% better than XGBoost) (Fig. 4); however, it
should be noted that XGBoost showed a more stable performance (less
variance) in prediction of all 3 classes (Table 3).

DISCUSSION
In this study, we applied machine learning to mpMRI of the

breast for early prediction of pCR to NAC and survival outcomes in
breast cancer patients. Machine learning with mpMRI allowed predic-
tion of pCR (best/mean AUC, 0.94/0.86) and survival outcomes (RFS
best/mean AUC, 0.83/0.77; DSS best/mean AUC, 0.92/0.91) with high
accuracy. Qualitative and quantitative features from all MRI sequences
were necessary for prediction of RCB class, RFS, and DSS, thus
supporting the use of an mpMRI approach. Of all machine learning
classifier models, the XGBoost classifier model outperformed all other
models in the prediction of pCR and DSS. Only for RFS, the LR clas-
sifier model showed a slightly better accuracy (~3%) yet the XGBoost
model is more stable.

In breast cancer patients undergoing NAC, the achievement of a
pCR is significantly associated with improved disease-free and overall
survival,2 and yet is achieved in only 30% of patients.2 Therefore,
means for early prediction of treatment response to identify women,
who are less likely to achieve pCR to standard NAC and are therefore
candidates for alternative treatment approaches, may be pivotal. The ap-
plication of machine learning to mpMRI to improve its predictive capa-
bilities is an important step toward precision medicine in breast cancer.
© 2018 Wolters Kluwer Health, Inc. All rights reserved.
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In contrast to initial prior studies, we used a wealth of qualita-
tive and quantitative parameters extracted from mpMRI including
T2-weighted MRI, DCE-MRI, and ADC (minimum, maximum, mean)
with DWI. We extracted 23 features per lesion and used 8 robust
machine learning algorithms including SVM, LDA, LR, RF,
SGD, decision tree, AdaBoost, and XGBoost. We showed that both
qualititve and quantitive features from mpMRI are important for accu-
rate prediction of pCR. Such features include changes in lesion size
and complete pattern of shrinkage on DCE-MRI, mean transit time on
DCE-MRI, minimum ADC with DWI, and peritumoral edema on T2-
weighted imaging. We demonstrated that all classifiers predicted pCR,
with XGBoost outperforming the others with a mean AUC of 0.8577
and best AUC of 0.9430.
www.investigativeradiology.com 5
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TABLE 3. Classification Performance of mpMRI Models Using
Various Classifiers Along With Recursive Feature Elimination

Classifier RCB RFS DSS

XGBoost 0.9430 (0.8577) 0.8333 (0.7672) 0.9200 (0.9052)
AdaBoost 0.8523 (0.8112) 0.7666 (0.7009) 0.9200 (0.8342)
Linear SVM 0.8767 (0.8450) 0.8666 (0.7777) 0.9200 (0.7797)
LDA 0.7544 (0.6608) 0.8833 (0.7620) 0.9705 (0.9019)
LR 0.8684 (0.8207) 0.8666 (0.8259) 0.9200 (0.8130)
SGD 0.8303 (0.7086) 0.8416 (0.7787) 0.9000 (0.7605)
Decision tree 0.8113 (0.7729) 0.7916 (0.5654) 0.8666 (0.8028)
RF 0.8857 (0.8364) 0.7916 (0.6682) 0.8666 (0.8559)

Best AUC (mean AUC) was reported for each classifier as the classification
performance metric.

mpMRI indicates multiparametric magnetic resonance imaging; RCB, resid-
ual class burden; DSS, disease-specific survival; RFS, recurrence-free survival;
XGBoost, extreme gradient boosting; AdaBoost, adaptive boosting; SVM, linear
support vector machine; LDA, linear discriminant analysis; LR, logistic regres-
sion; RF, random forests; SGD, stochastic gradient descent.
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Several studies that have investigated DCE-MRI in this context
have shown that functional imaging with or without texture analysis
outperforms conventional imaging, paving the way for new, effective,
and preferably noninvasive or minimally invasive approaches to predict
treatment response.8,28–30 Previous studies that have explored utility of
machine learning for improved prediction of pCR to NAC in breast
cancer patients have so far almost exclusively focused on single-
parametric DCE-MRI–derived kinetic features.31–33 O'Flynn et al12

have shown that machine learning algorithms such as LDA along with
statistical methods based on DCE-MRI features such as enhancement
FIGURE 3. Radar plot illustrations of (A) mean and (B) best performance
to identify the most stable ML classifier with high accuracy and low
variance for predicting RCB class, RFS, and DSS.

FIGURE 4. Receiver operation characteristic (ROC) curves of mpMRI
model using XGBoost classifier using 4-fold cross-validations in
prediction of (A) RCB class and (B) RFS, and 3-fold cross-validation in
prediction of (C) DSS. The solid orange lines present the mean ROC
curve, the lighter lines illustrate the ROC curve for each fold, and the
gray-shaded areas provide the confidence interval for the predictions
using mpMRI model.

6 www.investigativeradiology.com © 2018 Wolters Kluwer Health, Inc. All rights reserved.
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fraction, tumor volume, initial area under the gadolinium curve, and
pharmacokinetic parameters such asKtrans andKep can be used to pre-
dict patients in terms of responders and nonresponders to NAC. How-
ever, it should be noted that they have used only 7 features along with
one machine learning algorithm based on 32 patients.

Mani et al20 investigated the early prediction of the response to
NAC, adding functional information from DWI to DCE-MRI as well
as ultrasonographic, clinical, and histopathological information. Thir-
teen imaging features from quantitative DCE-MRI features; ADCmean

with DWI; size on ultrasound; and 11 clinical parameters including
age, clinically estimated tumor size, receptor status, proliferation rate,
and node parameters were used for the predictive models. Three linear
classifiers (Gaussian Naïve Bayes, LR, and Bayesian LR), 2 decision
tree–based classifiers (CART36 and RF), 1 kernel-based classifier
(SVM), and 1 rule learner (Ripper) in conjuntion with 3 feature selec-
tion methods (HITON-MB, Gram-Schmidt orthogonalization with a
maximum number of 10 features output, and BLCD-MB) were used.
In studies combining imaging and clinical data, Bayesian LR had the
best performance with an AUC of 0.96.20 In a follow-up study, the au-
thors achieved similar results (AUC, 0.86) when expanding the number
of variables derived from semiquantitve and quantitive DCE-MRI.19 It
has to be noted that, in this, the information of both invasive histopath-
ologic assessement, clinical examination, and ultrasoundwas necessary.
In our study, we solely relied on the qualitative and quantitive features
extracted from 1 imaging modality, that is, mpMRI, achieving similar
results with high accuarcies (best/mean AUC, 0.94/0.86).

In addition, we investigated the potential of applying machine
learning with mpMRI for the prediction of RFS and DSS. We found that
qualitative features such as lesion size together with quantitative pharma-
cokinetic features (volume distribution,mean plasma flow, andmean tran-
sit time) andADCwithDWI proved to be necessary for prediction of RFS
and DSS. The XGBoost classifier model for mpMRI outperformed all
other classifier models for DSS (mean AUC, 0.92) and was only mini-
mally superseded for RFS by LR (mean AUC, 0.83) and showed themost
stable performance of all models. So far, machine learning for prediction
of survival outcomes in breast cancer has mainly used histopathologic
and genomic data derived from invasive tissue sampling.21,34–37 The re-
sults of the current study further provide evidence that functional MRI
features can improve our understanding and prediction of cancer pro-
gression.16,21,30,38 Our data further highlight the potential of machine
learning in this context and indicate that machine learning with nonin-
vasive mpMRImight in the future be used as a cost-effective alternative
to genomic assays such as OncotypeDx, MammaPrint, Mammostrat,
and PAM50/Prosigna, which provide scores for risk of recurrence and
guide treatment decisions.39

A limitation of the current study is the small number of patients.
At the start of the study, patients routinely underwent pretreatment
staging with MRI and MRI before surgery for assessment of resid-
ual disease. Participation in this study required an additional MRI
examination, which limited compliance. As mpMRI has now been
established in this context, validation of the current results pending
adequate patient follow-up is the focus of an ongoing study. We
used qualitative and quantitative features that can be routinely extracted
frommpMRI, which required human input for lesion identification and
evaluation. Such interobserver or intraobserver variability may affect
the extracted imaging features, and in turn, may affect the prediction
of pCR, PFS, and DSS. This potential effect should be a topic of
future studies.

In conclusion, machine learning with mpMRI of the breast en-
ables early prediction of pCR to NAC and of survival outcomes in
breast cancer patients with high accuracy. The integration of machine
learning with mpMRI may provide valuable predictive information on
treatment outcomes and risk of recurrence to guide treatment decisions
and thus is a pivotal step for the realization of precision medicine in
breast cancer.
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