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ABSTRACT

Leader-follower controllability in brain networks which are affected neurodegenerative diseases can provide im-
portant biomarkers relevant for disease evolution. The brain network is viewed as a dynamic system where the
nodes interact via neighbor-based Laplacian feedback rules. The network has cooperative connections between
the nodes described by positive weights along with competitive connections which are described by negative
connection weights. The nodes take the role of either leaders or followers, thus forming a leader-follower signed
dynamic graph network. The results of this analysis can be easily generalized on unsigned brain networks. We
apply the leader-follower concept to structural and functional brain networks with neurodegenerative diseases
(dementia) and show that the found leaders represent important biomarkers for disease evolution. In other
words, the leader nodes drive the network towards deteriorating cognitive states.
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1. INTRODUCTION

Novel mathematical concepts such as graph theoretical techniques can capture the connectivity between areas
of the brain, and thus the topology of its network graph.1–3 These graph networks are mostly based on Pearson
correlation and are capturing either the structural and/or functional brain connectivity. From these graphs, new
descriptors can be derived in order to quantify induced changes in topology or network organization, or to serve
as theory-driven biomarkers which can help to predict dementia at the level of the individual subject.

Most graph networks applied to dementia research, even for longitudinal data, are static graph networks.
These models cannot capture the dynamical processes which govern the time evolution of the disease. Therefore,
a new paradigm in dementia research – dynamical graph networks – is necessary in order to advance this field
and overcome the obstacles posed by static graph theoretic models in terms of disease prediction, evolution, and
its associated connectivity changes over time.

Several research avenues have been proposed to understand and analyze the temporal evolution of brain
networks. One of the first was to employ a simplified method which results in a model of lower complexity. The
standard method for model reduction is known as balanced truncation.4 This method is based on a state-space
point of view of employing the canonical observability and controllability Gramian matrices,5–7 and is related to
both the past input energy (controllability) and the future input energy (observability). While for linear systems
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this procedure is pretty straightforward, for nonlinear systems balancing truncation becomes, in general, not a
simple task.8,9 These methods are thus not quite efficient in terms of model reduction for large-scale networks.
For brain connectivity models, we require a structure preservation between subsystems, and at the same time, a
network topology-preserving mechanism to provide model reduction. In previous work, we addressed this issue
by choosing a technique based on an area aggregation and time-scale modeling for sparse brain networks with
densely interconnected hubs and externally sparse interconnections between these hubs.10,11 In12 it was shown
that the neurons in the hubs synchronize on the fast time-scale, and that the aggregated neurons determine
the slow dynamics of the neural network. The basic concept of singular perturbation, applied in,12 has been
extensively studied in other neural networks at different time-scales.13–20

Another important concept relevant for the analysis of dynamic graph networks is that of synchronization.
Synchronization has been an important topic in biological neural networks, and has played a major role in neu-
rodegenerative disease research. Synchronization, however, cannot always be achieved by the whole network.
Thus controllers must be be designed in order to force the network to reach a synchronized state. The controllers
may only be applied to a restricted number of nodes, and this is achieved by the so-called pinning control.21,22

Typically, there are both random and specific pinning control algorithms.23,24 An important theoretical im-
plication is that the number of nodes to be controlled in a large-scale network is in general small. There are
different strategies to determine these driver or leader nodes, some exploiting the connectivity values of the graph
network25,26 while others only the architecture.27–30 For many neurodegenerative diseases, it’s very important
to obtain some information about some neural states in order to recover the others. Equally relevant is ”pinning
observability”, first proposed in.31 This refers to observation of a small number of neurons, such that the states
of the other neurons can be recovered analytically. Differently from the concept of pinning controllability, in this
case the dynamics of the neurons can be heterogeneous.32–35

In this paper, we apply the modern paradigm of leader-follower networks to both structural and functional
graph networks in brain networks affected by dementia. The nodes in the brain network interact via neighbor-
based Laplacian feedback rules. We apply the concept of leader-follower controllability to both structural and
functional brain networks with neurodegenerative diseases (dementia) and show that the found leaders represent
important biomarkers for disease evolution. In other words, the leaders play a role in “driving” the network
towards cognitive deteriorating states.

2. PINNING CONTROL IN IMAGING CONNECTOMICS

The most intriguing question when analyzing a dynamic graph network is the role of each node. In order to
reach an advanced debilitating neurodegenerative state, we need to “drive” a regulatory network from an existing
disease-free to a diseased state. The complexity of the actual networks poses many limitations to traditional
analysis tools:25 (1) most graph networks are directed, (2) the size of the network does not allow testing of several
combinations to determine driver nodes, and (3) the weights between nodes are not equal and time-dependent.
Modern control theory31,36 provides many tools to control such a network and thus to successfully implement
a therapeutic strategy. In the parlance of control theory, tools are described that are able to identify the set of
driver nodes and thus guide the network’s entire dynamics.

We define the consensus problem as a modality to reach an agreement or synchronization between a group of
autonomous agents, in our case the nodes of a brain network, when the states of the nodes change dynamically.

Mathematically, the consensus protocol in a multi-node system is defined as:

ẋi(t) =
∑
j 6=i

aij(xj(t)− xi(t)) = −
N∑
j=1

Lijxj(t) (1)

where xi(t) ∈ Rn is the state of the node. L = L(t) is a time-varying matrix when the graph network topology
changes over time.

Assuming that the dynamics of the node are nonlinear,37 the state equation becomes
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ẋi(t) = f(xi(t))− c
N∑
j=1

LijΓxj(t) (2)

with f() ∈ Rn representing the nonlinearity, c the coupling strength, and Γ = diag(γ1, · · · , γn) ∈ Rn×n being a
semi-positive definite diagonal matrix with γj ≥ 0. If γj 6= 0 means that the nodes can communicate through
their jth state.

A desired trajectory to be reached by the system, corresponding to a therapeutic solution, is defined as

ṡ(t) = f(s(t)) (3)

where s(t) is an isolated equilibrium point. To achieve this equilibrium point, the new equation to describe
evolution becomes

ẏi(t) = f(xi(t))− f(s(t))− c
N∑
j=1

LijΓyj(t) (4)

where yi = xi − si. The pinning control strategy is to guide the network to the desired state s(t). The
controllability of the system is evaluated based on the algebraic connectivity. Measures derived from the smallest
and largest eigenvalue of the connecting matrix are essential to determine the success of controllability. The
number of controlling nodes is smaller than the number of total nodes in the network and a direct control is
possible only at these nodes, and then is propagated to the rest of network through vertices.

3. CONTROLLABILITY AND LEADER SELECTION IN SIGNED GRAPHS

3.1 Problem Formulation

We consider undirected connected signed brain networks defined as G = (V, E ,W) consisting of a set of nodes
V = {1, 2, · · · , n} and a set of edges E ⊂ {i, j|i, j ∈ V}, the set of all unordered pairs. The interactions among
the nodes are described by an adjacency matrix W ∈ Rn×n with wij 6= 0 if (vi, vj) ∈ E and wij = 0 otherwise.
Different from unsigned graphs, the weights can be either positive or negative in order to describe collaborative
or competitive relationships between the nodes. Thus we define wij : E → {±1} in signed graphs. For two
neighboring nodes in the graph, we have either wij = 1 denoting cooperative interactions or wij = −1 denoting
noncooperative interactions.

A path in G is defined as a concatenation of edges while a cycle represents a path with identical starting and
end node, i. e. v1 = vk. The signed graph Laplacian of G is defined as L(G) = D −W where D is a diagonal
matrix. It’s important to point out that for signed graphs, the Laplacian −L(G) is no longer a Metzler matrix
with non-negative off-diagonal elements.

We assume x(t) = [x1(t), · · · , xn(t)]T ∈ Rn describe the states of the nodes, and that their dynamics are
determined by the following Laplacian dynamics:

ẋ(t) = −L(G)x(t) (5)

We split the node set into a leader Vl ⊂ V and follower set Vf ⊂ V with Vl∪Vf = V defining thus a leader-follower
network. Let’s assume the first m nodes represent the follower set Vf = {v1, · · · , vm}, and the remaining the
leader set Vl = {vm+1, · · · , vn}. The aggregated states of the nodes are given as x(t) = [xTf (t), xTl (t)] ∈ Rn with

xf (t) ∈ Rm×m and xl(t) ∈ Rn−m. The graph Laplacian then is determined to be:

L(G) =

(
Lf (G) Lfl(G)
Llf (G) Ll(G)

)
(6)
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with Lf (G) ∈ Rm×m, Lfl(G) = LT
lf (G) ∈ Rm×(n−m), and Ll(G) ∈ R(n−m)×(n−m). Thus, the followers’ dynamics

can be described as:

ẋf (t) = −Lf (G)xf − Lfl(G)u(t) (7)

with u(t) = xl(t) being the external input signal dictated by the leaders. In leader-follower networks, the
leader nodes play a crucial role in influencing the follower nodes, such that the graph network achieves a certain
dynamical behavior. Equation 7 shows that the follower nodes are influenced by the leader nodes via the
connectivity matrix. The following definition defines the leader-follower controllability.38

Definition 1: Assuming that the leaders are fully controllable and dictated by the external input u(t), a
leader-follower network with the dynamics shown in Equation 5 is called controllable, if the followers states xf (t)
in Equation (7) can be driven to any state target by properly choosing u(t). The system in Equation (7) is called
“controllable” if the controllability matrix, described as:

C = [−Lfl LfFfl · · · (−1)mLm−1
f Lfl] (8)

is full rank. Depending on the leader set, the above matrix can be either controllable or non-controllable.

A different set of dynamics for the graph network is given below, where leaders influence indirectly the
followers both through the followers’ nodes states as well as through their own dynamics.

ẋ(t) = −Lx(t) +Bu(t) (9)

where B = [bij ] ∈ Rn×(n−m) is a binary matrix with bij 6= 0 if a follower node is connected to a leader node and
bij = 0 otherwise. It is also important to mention that the controllability result holds for both equations if they
have the same set of leaders.

3.2 Results for Signed and Unsigned Graphs

Define Gp = (V, E ,W) as a signed path graph with V = {1, · · · , n} and E = {(i, i+ 1)|i ∈ {1, · · · , n− 1}} being
the node and edge set, respectively. The weight matrix W ∈ Rn×n can have either negative or positive weight
values which represent cooperative and competitive/antagonistic connections.

The following theorem38 gives the controllability result for a signed graph.

Theorem 1: A signed graph Gp = (V, E ,W) with followers evolving according to equation (7) is controllable
if one of the end nodes (i.e., v1 or vn) is selected as a leader.

The proof is given in.38 As shown in the same reference, the unsigned path graph is controllable if one of the
end nodes is selected as a leader.

The above results were extended to multi-leader selection38 as shown in the following theorem.

Theorem 2: A signed graph Gp with followers evolving according to equation (7) is controllable if multiple
adjacent nodes in Gp are selected as leaders.

The proof is given in.38
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Figure 1. Controllable functional brain networks with the leader set for (A) controls, (B) MCI and (C) AD. The primary
leader nodes are situated for (B) and (C) networks in the occipital lobe. Figure adapted from.39

4. ALZHEIMER’S DISEASE DIAGNOSIS

We now apply the theoretical results for driver nodes on functional (FDG-PET) and structural (MRI) connec-
tivity graphs39 for control (CN), mild cognitive impairment (MCI) and Alzheimer’s disease (AD) subjects. For
the structural data, the connections in the graph show the inter-regional covariation of gray matter volumes
in different areas, while in the case of functional data, the connections do not show the correlation in activity,
with links instead describing correlation in the glucose uptake between the different regions. In,39 these were
only 42 out of the 116 considered from the AAL in the frontal, parietal, occipital and temporal lobes. The
nodes in the graphs depict the regions, while the edges show if a connection exists between these regions or not.
The connections are all positive, meaning we have an unsigned graph, and we apply Theorem 2 assuming the
dynamics of the graph are given by equation (7). We define as leaders the hubs found in both functional and
structural brain networks.

The functional graphs and their leaders are shown in Figure 3.1. The first leader node lies in the left middle
temporal pole while the frontal lobe seems not to be affected. Thus, this first driver node represents an important
biomarker of the disease.

5. CONCLUSION AND DISCUSSION

This paper presents a new method for leader selection on signed and unsigned brain networks such that controlla-
bility of the brain network is ensured. The graph-inspired topological characterizations of network controllability
are applied to brain networks describing neurodegenerative diseases. These techniques found leaders in both
structural and functional brain networks which represent important disease biomarkers that can be employed to
identify the disease and monitor its temporal evolution.
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Figure 2. Controllable structural brain networks with the leader set for (A) controls, (B) MCI and (C) AD. The first
leader node lies in the left middle temporal pole for all three networks. Figure adapted from.39
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